Music Instrument Identification using Convolutional Neural Networks

Fabian Seipel
Matriculation Number: 372237
11.06.2018

Supervised by:
Prof. Dr. Stefan Weinzierl
Dr. Alexander Lerch
Hereby I declare that I wrote this thesis myself with the help of no more than the mentioned literature and auxiliary means.

Berlin, 11.06.2018

..

(Signature [Fabian Seipel])
Abstract

Identifying musical instruments in polyphonic recordings with computational methods is a challenging but essential task in the domain of Music Information Retrieval. Such algorithms can improve music recommendation and genre recognition systems or inform other tasks like source separation, automatic score notation as well as music tagging. The following master thesis presents an Instrument Identification, or synonymously, an Instrument Recognition system for polyphonic classical music material including a pre-processing method to reduce crosstalk within multi-track recordings.

The above mentioned reduction method is able to adaptively estimate the crosstalk amount in the spectral domain and subsequently applies spectral subtraction to remove it. Different datasets with randomly generated crosstalk from anechoic classical music recordings were employed for development and evaluation purpose. The algorithm shows promising results regarding the crosstalk reduction performance while only producing a small amount of musical artefacts. In order to adjust the algorithm for different application purposes, the trade-off regarding reduction strength and musical artefacts can be adapted by parameter scaling. Besides its original function, to pre-process audio material for labelling, the algorithm can also be utilized as post production effect for multi-track recordings or as de-noising approach within multi-channel microphone arrays.

The instrument identification system is based upon a convolutional neural network which is trained on a dataset of multi-track recordings from different classical music concerts at the Berlin University of Arts. Those multi-tracks both contain spot microphone recordings as well as the individual stereo mixtures. By utilizing the above mentioned crosstalk reduction method, the spot microphone recordings are first pre-processed to determine the respective instrument activities. Those activities are then transformed to labelling information by thresholding. Input features for the convolutional neural net are extracted from the stereo mixtures in form of mel-spectrograms. Both labels and features are generated on a variety of different time frame sizes. After the training procedure, the classification model is able to predict the combination of instruments in a given classical music piece for each frame. Furthermore, the influence of frame size on the classification performance is investigated. Additionally, this work also evaluates two different methods based on sliding classification and multiple instance learning to train a classifier on large time frames but eventually predict on smaller time frames. In this way, imprecise labels may be employed to classify music recordings more accurately regarding the time resolution.
Zusammenfassung

Contents

List of Figures xi
List of Tables xii

1 Introduction 1

2 Fundamentals and Related Work 3
 2.1 Deep learning ... 4
 2.1.1 Neural Networks 4
 2.1.2 Convolutional Neural Networks 6
 2.1.3 Optimization ... 8
 2.1.4 Generalization ... 11
 2.1.5 Validation .. 13
 2.2 Music Information Retrieval 16
 2.2.1 Audio signal representations 16
 2.2.2 Engineered features 18
 2.2.3 Deep learning for MIR 20
 2.2.3.1 End-to-end learning 20
 2.2.3.2 Mid-level representation learning 21
 2.2.3.3 Network design 22
 2.2.3.4 Transfer learning 23

3 Multi-track crosstalk reduction using spectral subtraction 25
 3.1 Introduction ... 25
 3.2 Method .. 27
 3.2.1 Crosstalk estimation 27
 3.2.2 Crosstalk reduction 29
 3.3 Evaluation .. 30
 3.3.1 Dataset ... 30
 3.3.2 Correlation results 31
 3.3.3 BSS Eval results 32
 3.4 Discussion .. 33
 3.5 Summary ... 35

4 Investigating the influence of frame sizes in instrument identification systems based on convolutional neural networks 37
 4.1 Introduction ... 37
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of biological and artificial neurons</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Neural net with one hidden unit (from Schlüter [2017])</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Visualization of the convolutional process (from Schlüter [2017])</td>
<td>7</td>
</tr>
<tr>
<td>2.5</td>
<td>Max-pooling (left) and overall architecture of a simple CNN (right), (from Schlüter [2017])</td>
<td>8</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of different optimization methods (from Schlüter [2017])</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>Small network with (right) and without (left) dropout (from Srivastava et al. [2014])</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>Training and validation loss without (left) and with (right) dropout as a function of epoch counts (from Schlüter [2017])</td>
<td>12</td>
</tr>
<tr>
<td>2.9</td>
<td>5-fold Train-Validation split (from Virtanen et al. [2018])</td>
<td>14</td>
</tr>
<tr>
<td>2.10</td>
<td>ROC and its respective AUC value for two classifiers (from Virtanen et al. [2018])</td>
<td>15</td>
</tr>
<tr>
<td>2.11</td>
<td>Hz to mel frequency mapping (top) and mel filter bank (bottom) (from Schlüter [2017])</td>
<td>17</td>
</tr>
<tr>
<td>2.12</td>
<td>Comparison of different spectrogram computations</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>Subset of learned representations from raw audio (low-pass filtered)</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Processing steps of the crosstalk reduction algorithm</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Three different magnitude spectra excerpts from the unmixed original bassoon track (left), the artificially generated bassoon mixture with 6dB crosstalk (middle) and the crosstalk reduced track (right)</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Flowchart of processing steps</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Overview of MIL learning procedure of experiment 2</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>Overview of track lengths in seconds in both test and training set together</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Evaluation results for the standard learning approach</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Evaluation results for sliding predictions</td>
<td>48</td>
</tr>
<tr>
<td>4.6</td>
<td>Evaluation results for the multiple instance learning approach</td>
<td>49</td>
</tr>
</tbody>
</table>
List of Tables

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Example matrix for estimated $\lambda_{l,j}$ values, computed by the gradient descent algorithm</td>
</tr>
<tr>
<td>3.2</td>
<td>Randomly generated mixing matrix for the -18 dB Mozart dataset, maximal values of 0.126</td>
</tr>
<tr>
<td>3.3</td>
<td>Correlation of A^{-1} and $(-L + I)$</td>
</tr>
<tr>
<td>3.4</td>
<td>BSS evaluation measures for mixtures, crosstalk reduced tracks and their difference, sorted by dataset and averaged over all four orchestral pieces</td>
</tr>
<tr>
<td>3.5</td>
<td>SDR/SIR gain for each mixture set as well as absolute SAR values of the crosstalk reduced results</td>
</tr>
<tr>
<td>3.6</td>
<td>Absolute SIR values of the mixtures</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of network architecture for 128x16 input mel-spectrogram (1 instance)</td>
</tr>
<tr>
<td>4.2</td>
<td>Overview of the dataset, separated by instrument</td>
</tr>
</tbody>
</table>

1 Introduction

We can describe music by low level attributes such as key, tuning, tempo and instrument ensemble or try to categorize music on higher levels, for example in terms of genres or tags. While humans are relatively skilled to determine such attributes, deriving functions or models to discriminate and classify music by algorithms is significantly more challenging. However, this is what Music Information Retrieval (MIR) is concerned with. One such MIR task that is investigated in the present thesis is called Instrument Identification or, synonymously, Instrument Recognition (IR). In most cases, the input to MIR systems only consists of the most basic description of sound, a digitalized waveform. Because of recent technological advances, a plethora of audio nowadays exists in such a digital form in order to be stored or distributed over network systems. At the same time, machine learning methods have proven their ability to learn discriminations from big data, in a similar way that humans learn through experience. Combining both these elements, we can exploit the continuously rising amount of digital audio by analysis approaches from machine learning to automatically describe a particular audio waveform by higher level attributes and annotations without any prior knowledge. Deep learning techniques, a special form of machine learning, are particularly suitable for this task since they are able to create hierarchical models to explain data patterns, similar to the inherent hierarchical structure of music.

Motivation and Outline

This thesis is concerned with designing a deep learning classifier to identify instruments in polyphonic classical music data. Such a method can provide information to support other Music Information Retrieval tasks such as source separation and recommendation or constitute a fundamental building block of higher level systems for score annotation, musical retrieval, genre recognition or automatic tagging. Possible use cases include mobile applications to learn instruments, upmix systems to prepare stereo content to multichannel speaker systems as well as audio effects or remix methods for music production environments.

Acoustic musical instruments differ in a variety of physical principles which influence their unique sound; the playing interface, the sound generation method and the filtering effects of material and corpus shape. Altogether, these properties produce specific and directional time-frequency patterns and hence allow to differentiate between individual instruments. A polyphonic IR system is able to determine which instruments occur in a given time frame with a certain possibility.

The goal of this thesis is to develop and investigate such a system based on a convolutional neural network machine learning approach for classical music data. Points of interest include to which extend this system can achieve correct classifications depend-
1 Introduction

ing on the individual instruments and the given dataset, how the analysis window or frame length influences the system performance and if it is possible to obtain predictions on small time frames even though the neural network system was trained on larger time frames. This could improve either the classification scores or time resolution of predictions from trained models for audio applications.

The dataset which was employed to develop and evaluate the above mentioned instrument recognition system comprises multi-track recordings from 116 classical musical pieces, interpreted at several concerts at the Berlin University of Arts. Those multi-tracks both include spot microphone recordings from individual instruments in the ensemble as well as the stereo mixture of the regarding pieces.

The overall IR systems includes a variety of processing steps. First, the spot microphone recordings are treated with a custom built algorithm to reduce crosstalk in order to prepare for the labelling process. This algorithm was developed and evaluated separately on an individual dataset of anechoic classical music recordings (see Section 3). After applying this reduction method, the processed multi-track audio was transformed into labelling information by frame-wise thresholding of their root mean square values. Features were extracted from the stereo mix of each recording in form of mel-spectrogram representations. Subsequently a convolutional neural net is trained on these features and labels which were generated on different time frames. After training the model, the classifier is able to determine the instrument composition for different time frames in a given classical music piece. Finally, the influence of frame width on classification results is further evaluated and discussed. The system also includes two other prediction approaches, sliding classification windows and a form of multiple instance learning, to evaluate if models which were trained on larger time frames can be utilized to predict the instrument activities on smaller time frames.

Chapter 2 introduces the basic concepts and mathematical foundations of deep learning in a compact form, followed by the presentation of the research field and applications of Music Information Retrieval, especially in combination with Deep Neural Networks. Chapter 3 presents an newly developed algorithm which is able to adaptively reduce crosstalk from multi-track recordings by spectral subtraction. This method can also be applied to other kinds of multi-channel input like microphone array systems or as post production effect for music recordings with crosstalk. In the following, Chapter 4 introduces the instrument recognition system. Finally, Chapter 5 rounds up this thesis by summarizing and discussing the present research and further gives an outlook about future work.
2 Fundamentals and Related Work

Techniques summarized as supervised machine learning are able to learn parameterized models from data. In a training phase, these models are tuned to find an optimal set of parameters by minimizing an objective function (i.e., error measure). Subsequently, the goal is to classify and predict unseen test data with the previously trained model. Such methods are especially valuable for problems that cannot be solved analytically but can be approximated iteratively. Machine Learning tasks differ from other optimization problems in a specific and important point: the key is to achieve high classification accuracies on new observations instead of maximizing performance on already present data examples to make profound predictions. In that case, the model is able to generalize well. If the model only shows good performance for the given training data, but generalizes poorly, this results in so-called overfitting. To prevent such overfitting, several regularization methods were designed to control the learning procedure (see Section 2.1.4). Besides supervised machine learning, several other techniques like unsupervised learning, transduction, transfer learning or reinforcement learning have been applied to different specific tasks. An in-depth description of machine learning concepts is out of this thesis’ scope and can be found in Bishop [2007] and Duda et al. [2012].

Deep learning, a specific form of ML, employs mathematical models of neurons to form artificial neural nets which are particularly suitable to explain non-linear structures in large datasets. The application of above mentioned learning techniques has recently been pushed by technological advances such as improved computational capacities and efficient storage opportunities for big data. Machine and deep learning models have shown superior performance compared to former data analysis technologies and are state of the art in a variety of contexts such as computer vision, machine listening, natural language processing and speech recognition, recommender systems, machine translation, market analysis, robotics, self-driving vehicles, bioinformatics and many more. A specific audio-related research field which increasingly relies on machine learning methods is termed Music Information Retrieval (MIR). This research area analyzes music in its raw (wave-)form or respectively another representation and extracts valuable information to structure and/or describe musical content.

In order to connect Music Information Retrieval tasks to Machine and Deep Learning, the following chapter first describes each topic in a compact manner to then fuse both subjects and then presents important concepts and studies which are related to the present thesis’ topic of Instrument Identification.
2 Fundamentals and Related Work

2.1 Deep learning

Deep learning algorithms consist of multiple non-linear processing layers which are able to autonomously learn different representations of data with multiple levels of abstraction. In comparison, conventional machine learning methods require pre-engineered features to first transform the raw data into an interpretable representation for the learner, a time-consuming progress which demands for domain expertise. Such complex deep learning architectures comprise a plethora of stacked, simple but non-linear modules that each transforms the data representation to a higher and slightly more abstract level. For classification problems, higher levels of representation emphasize aspects of the data which are important for discrimination while suppressing irrelevant information. The motivation behind this approach is that many natural visual or auditory signals indicate such compositional low- to high-level hierarchies [Dieleman, 2015]. Images contain edges or motifs which in turn assemble to objects. Music signals are structured both harmonically and temporally. Frequencies and pitches in a tonal system form chords that arrange to progressions while note or drum sequences are rhythmic patterns. [Lecun et al., 2015] and [Schmidhuber, 2015] provide a comprehensive overview about the topic of deep learning, whereas [Goodfellow et al., 2016] cover all aspects in detail.

2.1.1 Neural Networks

Artificial neural networks are mathematical models inspired by biological neural systems. Each biological neuron receives input signals from its dendrites and produces output signals along its axon. The axon eventually branches out and connects via synapses to dendrites of subsequent neurons. Motivated by the structure of its biological equivalent, the mathematical formulation of a single artificial neuron is described as:

\[y = f\left(\sum_i^{} w_i x_i + b\right) = f(w^T x + b) \] (2.1)

where \(f(\cdot) \) is a non-linear transfer or activation function and \(\theta = (b, w) \) are adjustable model parameters: the weight vector \(w \) and a bias term \(b \). This single unit maps an input vector \(x \) to a scalar output value \(y \) by computing a weighted sum as the dot product of \(w^T x \). Figure 2.1 shows a comparison of biological and artificial neurons.

![Figure 2.1: Comparison of biological and artificial neurons](image_url)
Common choices for the activation function are *sigmoidal functions*, for example:

\[
f(x) = (1 + e^{-x})^{-1} \tag{2.2}
\]

\[
f(x) = \tanh(x) \tag{2.3}
\]

or *linear rectifications* as well as *leaky linear rectifications*:

\[
f(x) = \max(x, 0) \tag{2.4}
\]

\[
f(x) = \max(x, 0.01x). \tag{2.5}
\]

To obtain more complex input-output mappings, multiple neurons can be processed simultaneously and layered sequentially to form a neural net. Each unit contains its own parameters \(\theta = (w, b) \). A parallel computation of neurons can be described as a matrix product of weights and inputs plus bias terms:

\[
y = f(W^T x + b) \tag{2.6}
\]

Stacking multiple layers or units requires to simply insert the previous layer’s output into the next layer’s input:

\[
y = f_2(W^T f_1(W^T x + b_1) + b_2) \tag{2.7}
\]

The data vector \(x \) is conventionally referred to as input layer while the outermost function is denoted as output layer. Any layers in between are called hidden layers. For a given task, the size of the output layer as well as the type of its transfer function \(f(\cdot) \) are normally defined by the number of target classes and the problem statement.

![Neural net with one hidden unit](https://example.com/neural-net.png)

Figure 2.2: Neural net with one hidden unit (from Schlüter [2017])
The number of hidden layers, also referred to as the depth of the network, their respective size and the type of transfer function for each unit can be designed according to the problem definition. However, one specific activation function is usually chosen for all hidden layers for convenience. Figure 2.2 displays a simple neural net with one hidden layer to visualize the computation process.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) or ConvNets are a variant of Neural Networks with two special types of layers: convolutional layers and pooling layers. These layers introduce constraint connectivity patterns within the CNN which are especially useful if local groups of the data are highly correlated like edges and motifs in images or harmonics of a tone in a spectrum representation of audio data. Additionally, CNNs are capable of detecting local statistics of data which are invariant to the overall location, for example similar or equivalent objects that appear in different parts of a picture or an audio signal.

Convolutional layers

ConvNets are designed to process multidimensional array data such as 2D pictures which contain multiple colour channels. A convolutional layer takes as input a stack of feature maps, like the pixels of those colour channels, and convolves each feature map with a set of learnable filters to obtain a new stack of output feature maps.

Starting from the mathematical formulation of an artificial neuron from Section 2.1.1, this can be implemented by replacing the matrix-vector product $\mathbf{W}^T \mathbf{x}$ with a sum of convolutions. The result of this weighted sum is then passed through a non-linear function $f(\cdot)$ to calculate the output feature map $\mathbf{Y}^{(l)}$, $l = 1\ldots L$:

$$
\mathbf{Y}^{(l)} = f\left(\sum_{k=1}^{K} \mathbf{W}^{(k,l)} \ast \mathbf{X}^{(k)} + b^{(l)} \right).
$$

(2.8)

Herein, $\mathbf{X}^{(k)}$ denotes the set of K matrices with $k = 1\ldots K$ which comprise the input feature maps, while the \ast operator describes a two-dimensional convolution. Learnable parameters are represented by the weight or kernel matrices $\mathbf{W}^{(k,l)}$ including the filter coefficients and the bias terms $b^{(l)}$ for the respective output feature map l.

Figure 2.3 on the left shows the computation of a single output feature patch from a $5 \times 5 \times 3$ input feature map ($\mathbf{X}_0, \mathbf{X}_1$ and \mathbf{X}_2) by using a 3×3 filter. This filter is then shifted step by step over each possible position to iteratively obtain the output representation \mathbf{Y} (see Figure 2.3 on the right). In comparison to a standard neural network, the convolutional unit restricts the connections in between layers to one filter per output map plus biases and thereby immensely reduces the number of parameters which acts as a strong regularizer that in turn prevents overfitting. Each filter operates as an individual feature detector for local patterns depending on the filter shape.
2.1 Deep learning

There are a number of hyperparameters which determine the output feature map shape and hence need to be considered when designing convolutional layers. Increasing the filter size widens the receptive field which results in an extension of the spatial context per output patch. The number of filters specifies the depth of the output feature map. To decrease the spatial size of the resulting feature map, each filter can be shifted over the input with a larger step size, determined by the stride parameter. Using a stride of 2 with the example from Figure 2.3 would result in an output map size of \(2 \times 2 \). To prevent the network from decreasing in spatial size of the feature representation, the input can be zero-padded on each edge. Figure 2.4 shows the same \(5 \times 5 \) feature map and \(3 \times 3 \) filter from Figure 2.3, but this time using a stride of 2 while zero padding the input.

Pooling layers

While the advantage of convolutional layers is to detect local data patterns, pooling layers are able to aggregate semantically similar features together. This allows to model correlations across a larger part of the input with the downside of decreasing the resolution. Reducing the dimensions in this way creates an invariance to translations or distortions of the input, a beneficial model attribute when classifying image or audio data. Pooling units typically compute the mean or maximum of a local patch. Figure 2.5 (left) shows a \(2 \times 2 \) max-pooling computation of a \(4 \times 4 \) input feature map, resulting in a \(2 \times 2 \) output feature map. As opposed to convolutional units, pooling layers do not
have any trainable parameters.

Figure 2.5: Max-pooling (left) and overall architecture of a simple CNN (right), (from Schlüter [2017]).

Figure 2.5 (right) displays a simple CNN architecture. Usually, several convolutional units are stacked in the first part of a ConvNet before pooling layers then reduce the spatial network complexity. A fully connected layer at the end of the CNN maps all features to the desired output dimension. Feature maps are commonly visualized as 3D volumes. The design choices for ConvNets are highly dependent on the individual task. For larger classification tasks, CNNs sometimes contain more than 100 layers and exceed 100 million parameters to train. For most computer vision tasks and many audio recognition problems ConvNets represent state of the art algorithms.

2.1.3 Optimization

Like other machine learning techniques, the optimization of (Convolutional) Neural Networks is based on minimizing an objective function $J(\theta)$ with respect to the model parameters $\theta = (W, b)$ which in the case of CNNs consist of weights and bias terms. In order to adjust the parameter vector for an optimal solution, the learning algorithm calculates a gradient vector $\Delta \theta$ that indicates in which direction and to what extent the loss changes for small derivatives of θ:

$$\Delta \theta = \sum_{(x,t) \in D} \frac{\partial}{\partial \theta} J \left(f(x|\theta), t \right) = \sum_{(x,t) \in D} \frac{\partial}{\partial y} J(y, t) \frac{\partial}{\partial \theta} f(x|\theta) \quad (2.9)$$

Herein, $\partial J/\partial y$ describes the gradient with respect to the networks’ outputs and $\partial f/\partial \theta$ denotes all partial derivatives with respect to the model parameters. In order to associate the loss function (at the network’s output) to the input data with respect to the individual neuron’s weights, the chain rule can be applied by working backwards through the network. This method, called backpropagation, can be applied if both objective and activation functions are differentiable. It constitutes the mathematical foundation of the
learning procedure in neural networks. By presenting unseen input data to the learning algorithm, the weight vector θ is then adjusted in the opposite direction of that gradient to iteratively minimize the loss function:

$$\theta \leftarrow \theta - \eta \Delta \theta$$ \hspace{1cm} (2.10)

This parameter update rule is known as the simplest form of gradient descent (GD). The negative gradient indicates the direction of steepest descent in the multi-dimensional parameter space. Updated values of θ then need to be evaluated again regarding the loss function in a loop wise procedure until $J(\theta)$ eventually converges. In the above equation η denotes the learning rate which in turn controls how much the parameters change for each iteration step. The learning rate is a crucial but sensitive parameter. For large values, the convergence may be reached faster, however, if η is too high, $J(\theta)$ can start to oscillate or even diverge completely. A small value of η avoids such behaviour, but possibly leads too a very slow convergence process or even stop the optimization before a minimum is found. In most learning tasks, η is a hyperparameter that needs to be assessed carefully.

For practical reasons, due to computational complexity, the learning algorithm is only presented a often randomly chosen subset of the input data in each iteration step, a so-called mini-batch. If the loss and weight updates are calculated based on such mini batches, the optimization method is referred to as stochastic gradient descent since subsets of the input data can only produce a noisy estimate of the gradient in comparison to using all available data. Simple Gradient Descent, stochastic or not, is a relatively slow and unreliable approach to find global minima for $J(\theta)$. The method often fails to find global minima on the parameter space surface due to vanishing gradients. Several successors of GD have evolved, employing different techniques to efficiently find minima for the objective function:

- **Momentum** [Sutskever et al., 2013] proposes to add a short term memory to gradient descent, considering the previous steps to accelerate progress in stable directions:

$$v_\theta \leftarrow \alpha v_\theta - \eta \Delta \theta$$ \hspace{1cm} (2.11)
$$\theta \leftarrow \theta + v_\theta$$ \hspace{1cm} (2.12)

v_θ basically denotes a moving average over the gradient $\Delta \theta$. In a more physical interpration of the momentum update, v_θ can be referred to as a velocity when moving through the parameter space with $\Delta \theta$ behaving as excitation force and α being a friction hyperparameter which dampens this movement.
2 Fundamentals and Related Work

- **Nesterov Accelerated Gradient** (NAG) \cite{nesterov2013} is a slight adaptation of the momentum update rule. Instead of evaluating the gradient at its current position θ, NAG calculates a modification of this gradient at the parameter space position θ' that would be reached with the current velocity v_{θ}:

\[
v_{\theta} \leftarrow \alpha v_{\theta} - \eta \Delta (\theta + \alpha v_{\theta}) \tag{2.13}
\]

\[
\theta \leftarrow \theta + v_{\theta} \tag{2.14}
\]

In comparison to the original momentum, the "look ahead" gradient evaluation within the NAG method dampens oscillations.

- **ADAM**, developed by \cite{kingma2014}, computes a long-term exponential moving average of the gradient and scales the updates according to its reciprocal value. In this way, updates are scaled down in regions and dimensions where gradients are large and vice versa:

\[
v_{\theta} \leftarrow \beta_1 v_{\theta} - (1 - \beta_1) \Delta \theta \tag{2.15}
\]

\[
m_{\theta} \leftarrow \beta_2 m_{\theta} - (1 - \beta_2) (\Delta \theta)^2 \tag{2.16}
\]

\[
\theta \leftarrow \theta - \eta \frac{v_{\theta}}{\sqrt{m_{\theta}} + \epsilon} \sqrt{1 - \beta_2^t/(1 - \beta_1^t)} \tag{2.17}
\]

Similar to the NAG/Momentum, v_{θ} represents a first order moment whereas m_{θ} describes the second order moment of gradients, both scaled by individual friction parameters β_1 and β_2. The addition of ϵ in the denominator, typically set to small values in the order of 10^{-8}, is supposed to avoid extreme scaling values. By formulating the update rule as a ratio of gradients, ADAM is invariant to rescaling of objective function or gradients and further ensures steady movement throughout the parameter space independent of its curvature and shape.

Figure 2.6 displays the typical behaviour of the presented optimization methods for the same function and feature space. While simple gradient descent oscillates heavily for higher learning rates (a), the step wise minimization converges too soon when choosing a low value of η (b). Momentum is able to dampen the oscillations and drives the solution towards the minimum by accumulating velocity (c). ADAM, by far the most efficient optimization technique in this case, both prevents the oscillation of the system and moves straightforward to the optimum (d). Besides that, ADAM also needs less than half of the iteration steps compared to each other method. Due to these advantages ADAM is frequently used in many neural networks as state of the art optimizer at the moment.
2.1 Deep learning

(a) GD, $\eta = 1.1e^{-3}$.
(b) GD, $\eta = 5.5e^{-4}$.
(c) Momentum, $\eta = 1.1e^{-3}, \alpha = 0.95$.
(d) ADAM, $\eta = 5.5e^{-2}, \beta_1/\beta_2 = 0.9/0.99$.

Figure 2.6: Comparison of different optimization methods (from Schlüter [2017]).

2.1.4 Generalization

Similar to other machine learning techniques, the aim of utilizing neural networks for a given task is estimating predictions on unseen data with a computed probability or in a confidence interval. Deep neural networks offer several techniques to improve generalization. Two especially valuable of these techniques are presented in the following.

Dropout

For neural networks that are optimized via Gradient Descent, a method called Dropout has been proposed for generalization purpose [Srivastava et al., 2014]. In every iteration step of the training procedure, a predefined amount of the neurons’ inputs in each layer are randomly set to zero. To compensate for those omitted units, the remaining neurons’ inputs are scaled up so that the expected average input for each unit stays the same.

Figure 2.7 shows a three layer network that dropout was applied to. There are several reasons why generalization improves with this technique. Dropout can be interpreted as a specific variation of so-called ensemble learning, where a variety of different models
are trained in order to average predictions at the end. With the intended deactivation of neurons, the method prevents the network to focus on a small subset of features which possibly explain a large amount of variance in the training data. Using dropout, the network needs to learn more robust features that consider more units at the same time. Instead of concentrating on only a few neurons, the net has to be prepared to compensate for cancelled units. In other words, the network has to adopt multiple solutions to a problem which strongly supports the idea of generalization. Figure 2.8 displays the effect of dropout on training and validation loss. Both loss functions behaviours are noisy due to the stochastic approach within the dropout method. While the network starts to overfit after about 50 epochs for standard optimization, the validation loss flattens out with the dropout technique.

Data augmentation

A generalization technique that is particularly interesting for Convolutional Neural Networks consists of purposefully augmenting training data [Krizhevsky et al., 2012]. For
2.1 Deep learning

many learning problems, the amount and variety of available data is limited. One way to synthesize new training material is transforming the inputs in various manners. For image classification tasks, pictures can be rotated, translated, scaled, cropped, flipped or sheared while leaving the associated target label unchanged. Besides increasing the number of data samples without further acquisition of new material, augmentation also helps the model to become invariant to such transformations which again improves generalization. This method is particularly effective with CNNs since ConvNets are able to adapt to augmentations by exploiting convolutional pooling layers (see Section 2.1.2). The type of transformations, however, needs to be chosen carefully. Augmentations are ought to represent possible real world input observations. Extreme transformation can distort the desired input-output mappings.

This idea has been adapted for a range of audio classification tasks like blind source separation [Uhlich et al., 2017], acoustic event detection or environmental sound classification [Salamon and Bello, 2017, Takahashi et al., 2016, Piczak, 2015, Su et al., 2017, Virtanen et al., 2018], speech analysis [Cui et al., 2015, Kanda et al., 2013, Ragni et al., 2014], singing voice detection [Schlüter and Grill, 2015], instrument identification [Park and Lee, 2015], chord recognition [Humphrey and Bello, 2012] and several others. Common choices for transformations in the audio domain are time stretching, pitch shifting, reverberation or room simulation, dynamic range compression, equalization, inserting background noise and, in case of polyphonic source material, mixture creation. For efficient implementation of audio data augmentation the MUDA software framework [McFee et al., 2015] and the SCAPER python library [Salamon et al., 2017] were developed. Throughout all learning problems, data augmented training procedures result in higher system performance scores.

2.1.5 Validation

Since the actual achievement of machine learning models is to find a mapping from observations to target labels which can be applied to new data, it is of crucial importance to divide datasets in a training and test set to evaluate performances. While the former is essential to learn optimal model parameters \(\theta \), the latter is intentionally held out of the training procedure to obtain an unbiased estimate of the model’s performance on unseen data. The training set itself is again split two fold, using one part, as above mentioned, to build the model and the second one, also known as validation set, to optimize so-called hyper parameters. In contrast to the model parameters \(\theta \), the setting of hyper parameters (e.g. the learning rate, the form of the loss function or the number of learning iterations, also called epochs) directly influences the training procedure and hence cannot be optimized during the learning phase. Given the fact that machine learning algorithms often have to be developed on relatively small datasets, this data three-fold sometimes is infeasible and impractical. Instead, a common practice in such situations is utilizing K-fold crossvalidation, a method to iteratively split training and validation set \(K \) times and perform the evaluation on each split. Figure 2.9 shows such a setting for
five folds. For this type of evaluation, stratification is advisable. This process denotes the distribution of data samples or observations over all folds in a supervised manner. In that way, each fold is representative of the dataset, for example by including the same amount of samples for each class. Within the crossvalidation technique, calculated performance metrics are then averaged over the various folds.

Figure 2.9: 5-fold Train-Validation split (from Virtanen et al. [2018])

Performance metrics

Evaluation is carried out by comparing the model’s predictions to the actual ground truth or target labels of the test data. All necessary metrics for this evaluation can be calculated from the following intermediate statistics:

- **True positives (TP):** A correct prediction. Both model output and target label indicate that a certain class is present.
- **True negatives (TN):** A correct prediction. Both model output and target label indicate that a certain class is not present.
- **False positives (FP):** A false prediction. While the model output indicates that a certain class is present, the target label shows that the class is not present.
- **False negatives (FN):** A false prediction. While the model output indicates that a certain class is not present, the target label shows that the class is present.

Those statistics are exclusive, in other words, only one of each case can happen simultaneously in a binary classifier. Their total count sums up to the number of test data samples. Evaluation metrics are then derived from accumulated values of the intermediate statistics.

Accuracy measures how often the classifier makes a correct decision as the ratio of correct model predictions to the total number of test samples:

\[
\text{ACC} = \frac{TP + TN}{TP + TN + FP + FN} \quad (2.18)
\]
2.1 Deep learning

Precision represents the ratio of true positives to the total count of the model’s positive predictions, while **Recall** stands for the ratio of true positives to the sum of true positives and false negatives. The **F-Score** is defined as the harmonic mean of precision and recall and serves as a valuable overall measure for many classification tasks:

\[
P = \frac{TP}{TP + FP} \quad R = \frac{TP}{TP + FN} \quad F = \frac{2PR}{P + R}
\]

(2.19)

F-Score is a commonly used and popular measure to compare classifiers since it considers both precision and recall score at the same time. However, the F-Score does not take true negatives (TN) into account at all. For a variety of classification tasks, it is highly advisable to consider each metric individually to evaluate a model’s performance.

ROC Curves and AUC

The receiver operating characteristic (ROC) and its corresponding area under the curve (AUC) offer the possibility to examine the performance of a binary classifier for a range of discrimination thresholds. A ROC curve displays the true positive rate as a function of the false positive rate, while the AUC in turn summarizes the ROC in a single value and thereby permits to compare classifiers across all operating points. Figure 2.10 shows the ROC for two different models and their corresponding AUC value. Higher AUC values indicate better performance. A ROC equivalent to the dotted grey line describes a random guess classifier.

![Figure 2.10: ROC and its respective AUC value for two classifiers (from Virtanen et al. 2018)]
2 Fundamentals and Related Work

2.2 Music Information Retrieval

While human beings are highly skilled to recognize details from musical pieces like tempo, instrumentation or genre by mere listening and due to experience, this task is fairly difficult to formalize and then solve with the help of machines. Music can be represented in manifold ways. Low level representations include raw waveform or spectrograms while symbolic representations (MIDI files, score notation etc.) or meta data (e.g. composer, genre, tempo, key) are referred to as high-level representations, condensing the information in subordinate terms. The difference in between such abstraction levels is known as semantic gap. Music Information Retrieval systems focus on automatically bridging this gap by using computational methods. Extracting information from lower-level audio representations can have various reasons. Such applications include automatic transcription, genre classification, instrument identification, annotation, fingerprinting, recommendation, audio tagging and many others. A broader overview as well as more detailed information about the specific topics can be found in Müller [2007], Lerch [2012] and Schedl et al. [2014].

2.2.1 Audio signal representations

Most digital audio signals are representing continuous air pressure signals, captured by transducers such as microphones. The analog to digital conversion both includes a quantization in time and amplitude. This transformation, called pulse code modulation, stores a signal with a defined sampling frequency and bit depth in uncompressed formats like WAVE. These one-dimensional representations contain only few information compared to their storage size. Most MIR tasks, especially for deep learning, involve the transformation of raw wave forms to two-dimensional time-frequency representations.

Short time Fourier transform

The most common spectrogram representation is the short time Fourier transform (STFT) which indicates the time-varying energy across different frequency bands. STFTs are typically calculated for short periods of time, so called frames or windows of length N, to obtain the magnitude and phase information per frequency bin k for a certain time frame [Muller et al., 2011]:

$$X(k) = \sum_{n=0}^{N-1} w(n) x(n) e^{-j2\pi kn/N}$$ \hspace{1cm} (2.20)

Herein x denotes a discrete time signal at sample point n and sampling rate f_s, $w(n)$ describes an N-point temporal window function. The corresponding frequency value for band k is determined by both f_s and window length N:

$$f(k) = \frac{k}{N} \cdot f_s$$ \hspace{1cm} (2.21)
According to Equation 2.20, the maximum number of bands, also referred to as frequency bins, is always tied to the window length. For some applications, the window function is shifted step wise over the time signal with a so called hop-size which is commonly smaller than the window size. Consecutive frames are then concatenated to a spectrogram matrix. The STFT describes a linear, complete and invertible transform. An inverse STFT can obtain the time-domain signal from a spectrum representation of magnitude and phase.

Mel scale

In order to adapt this representation to the human perception of pitch, the linear STFT bands can be post-processed to obtain other scales such as the mel scale. Using a bandpass filterbank of \(M \) bands, the frequency \(f \) can be mapped to the corresponding mel band \(m \) [O’Shaughnessy, 1987]:

\[
m(f) = 2595 \log_{10} \left(1 + \frac{f}{700} \right) \quad (2.22)
\]

The mel scale represents perceptually equal pitch distances according to human listeners. Figure 2.11 displays the mapping from Hertz to mel scale as well as a triangular filter bank for a spectrum conversion to 8 mel bands.

![Figure 2.11: Hz to mel frequency mapping (top) and mel filter bank (bottom) (from Schlüter, 2017)](image)

Constant-Q transform

Another technique to compute a logarithmically scaled frequency representation that corresponds to the pitch scaling in western tonal systems is the constant-Q transform (CQT) [Brown, 1991]:
Fundamentals and Related Work

\[X^{CQ}(k) = \frac{1}{N(k)} \sum_{n=0}^{N(k)-1} w(k, n) x(n) e^{-j2\pi Q n / N(k)} \] (2.23)

By adapting the analysis window length \(N(k) \) according to the bin frequency \(f(k) \) (the relation from window length to frequency \(Q \) is constant), the CQT is able to obtain a higher resolution for low frequencies:

\[Q = \frac{f}{\Delta f} = \frac{1}{2^{1/c} - 1} \] (2.24)

\[N(k) = f_s \cdot Q \frac{f(k)}{f(k)} \] (2.25)

Herein, \(Q \) determines the frequency resolution and can be adjusted to match tonal scales, for example as a parameter that represents the number of bins per octave \(c \). The CQT describes a variation of the STFT which computes a spectrum only for specific, logarithmically spaced frequency bins. CQTs are practical tools to analyze pitch and chord structures. The variation of window lengths, however, also leads to blurring effects in the spectrum. While longer analysis windows in lower frequency ranges cause inaccuracies regarding the time domain (horizontal blurring), short analysis windows for higher frequencies entail inaccuracies regarding the frequency domain (vertical blurring). As opposed to the STFT, the constant-Q transform is not invertible. [Lerch, 2012]

Figure 2.12 shows three different spectral representations for two successive 15 second square wave signals. Both signal’s fundamental frequency rises from 20Hz to 2000Hz; the first one linearly, the second one logarithmically. Employing a \(M = 128 \) band filter bank according to Equation 2.23 yields the mel scale representation (middle). The bottom plot displays the result of a constant-Q-transform with \(c = 12 \) to obtain a representation which corresponds to equal tempered half tone spacing. Horizontal smearing effects for lower frequencies are due to longer analysis windows, whereas vertical smearing in higher frequency regions is caused by narrow analysis windows.

2.2.2 Engineered features

Previous to the possibility of feature learning by networks, high level representations of signals needed careful engineering and domain expertise. Most audio descriptors are derivations from time-frequency representations. Considering the magnitude spectrum at a single time frame as a probability distribution over the individual bins allows to describe the spectral shape with statistical properties. Such descriptors include the spectral centroid, spread, skewness and kurtosis which are defined as the first to fourth order central moment of this distribution. Spectral rolloff denotes the 85- or 95-percentile of the accumulated STFT magnitudes, while spectral slope is the first coefficient \(a \) for a linear regression fit to the magnitude spectrum: \(S(k) = ak + b \). [Lerch, 2012]
2.2 Music Information Retrieval

Mel-Frequency Cepstral Coefficients (MFCCs) have been extensively used in the domain of speech recognition during the last 30 years. By applying a *Discrete Cosine Transform* to the logarithmically scaled mel spectrum, they provide a compact representation which contains most principal timbre information. The number of utilized filter components varies depending on the application purpose. Common choices range in between 20 to 40 coefficients. [Davis and Mermelstein, 1990] [Logan and others, 2000]

Chroma vectors are 12-dimensional magnitude vectors that represent the accumulated magnitude in each pitch class of the western equal-tempered scale. They display the distribution of those individual classes in a histogram form. Originally introduced by [Wakefield, 1999] and [Fujishima, 1999], the chroma vector computation has been adapted and optimized in several ways. [Lerch, 2012] gives a detailed overview of the manifold variants.

Delta and acceleration features can be computed from any above shown audio representation. They denote the difference of a certain feature in consecutive frames (delta) or, in turn, the difference of the respective deltas in consecutive frames (acceleration). Both measures assess temporal short-term fluctuations which are often evaluated in parallel to the basic features in focus.

![Figure 2.12: Comparison of different spectrogram computations](image-url)
2.2.3 Deep learning for MIR

Music audio as well as deep learning share a common property: They both incorporate hierarchical structures [Dieleman, 2015]. Learning approaches can exploit such hierarchical models by stacking non-linear network layers to learn abstractions of feature representations. The learning procedure is then able to identify those contextual dependencies and map the respective model to the data structure at hand for a given task. In the MIR domain, CNNs have proven successful to model such connections due to robustness regarding variations in the data.

Before the advent of deep learning techniques, audio data needed to be first analysed to manually engineer representations as described in Section 2.1.2. Feature engineering demands high expertise in the respective research field. While hand-designed features have been employed successfully for a range of problems, they have also reached a performance limit [Humphrey et al., 2012] [Humphrey et al., 2013]. However, the ability to learn feature representations comes with a certain trade-off. Learning approaches, especially convolutional neural networks, demand for large datasets, high computational resources and expertise regarding machine learning to effectively train models. Nevertheless, recent developments both for image as well as audio related tasks have shown superior results for deep learning techniques. Choi et al. [2017b] provides a comprehensive tutorial on the topic, including a current literature overview [1]. The research work of Dieleman [2015], Schnitte [2017] and Humphrey [2015] all contain valuable insights into deep learning for MIR with different individual focus areas.

The optimal employment of such techniques includes various interdependent aspects. Many advances in the field of computer vision have been adapted for music information retrieval tasks while other design principles still need to be assessed individually for the classification of audio data. Most deep learning approaches rely on either raw audio waveforms (end-to-end) or spectrograms features (mid-level representation) as input.

2.2.3.1 End-to-end learning

When working towards image classification, processing raw data in form of pixels has been established as state of the art. Full end-to-end learning includes all methods that operate directly on unprocessed data inputs. In the audio domain, such approaches then apply models on individual samples of the discretized waveform. By removing the spectrum calculation step, the feature learning process can also gain insights about what kind of information are salient for a given task and to further understand inherent data structures. Dieleman and Schrauwen [2014] have first explored this approach to music audio by comparing end-to-end to spectrum representation learning with ConvNets. Although the latter showed inferior results for this particular task and dataset, the network was able to discover frequency decompositions on its own. Figure 2.13 displays a subset of trained frequency-selective filters on raw audio for the lowest network layer.

Since learning on raw audio retains all entailed information in the data, including the...
2.2 Music Information Retrieval

Figure 2.13: Subset of learned representations from raw audio (low-pass filtered)

phase, this approach is also highly appealing with regard to generative models in order to synthesize audio signals. Subsequent studies on learning on sample level have shown promising results for synthesis systems concerning text-to-speech (TTS) systems [van den Oord et al., 2016] [van den Oord et al., 2017] [Mehri et al., 2016] or musical instrument notes [Engel et al., 2017] [Mor et al., 2018]. Despite comparably good audio quality and flexibility, training such models demands for very high computational capacities that only few researchers have access to. Other approaches which exploit raw audio for classification instead of (re)synthesis have been catching up with spectrogram based learning for a variety of MIR tasks, yet still remain inferior [Tüske et al., 2014] [Golik et al., 2015] [Ghahremani et al., 2016] [Sainath et al., 2015] [Dai et al., 2017] [Lee et al., 2017]. Only for larger datasets, end-to-end approaches can achieve similar performance results [Pons et al., 2017].

2.2.3.2 Mid-level representation learning

For most MIR tasks, feature learning and classification still relies on mid-level representations in form of spectrograms. From a biological point of view, the transformation to spectrograms is more than reasonable: In advance to reaching the human brain, the cochlea processes audio signals by applying a filter bank in a similar manner. Converting audio to image-like features in form of spectrograms furthermore simplifies the adaptation of computer vision learning methods. The most commonly used input features are STFTs and mel spectrograms (see Section 2.2.1). While STFT representations also contain phase information which can be employed for a sonification of layers via retransformation to the audio domain [Choi et al., 2016], mel spectrograms only preserve magnitude values. However, most studies report best performance results for the latter or other logarithmically scaled representations [Choi et al., 2017]. Such compressed and compact frequency scales allow for capturing overtone structures in convolutional layers with smaller receptive fields since filter weights can be shared within a larger range of frequencies and pitches. CQT spectra are especially helpful for tasks like chord recognition. Herein, harmonic relations in equally tempered tuning show similar spectral profiles independent from the frequency region. STFTs often contain a lot of redundant information for classifying music audio. Learning problems which involve noise-like
material, for example environmental audio, can benefit from linear spectrum representations since such sound profiles are less related to harmonic structures and often involve a broader frequency range \cite{Virtanen2018}.

Preprocessing the magnitude values of spectrograms can further improve the classification results. Such steps include spectral whitening \cite{Lee2009} or logarithmic mapping \cite{Choi2017a} and the subsequent standardization to zero mean and unit variance \cite{LeCun1998}. Besides the fact that logarithmic magnitude values correspond to the human loudness perception, \cite{Schluter2017} notes that a transformation to the logarithmic scale also results in a rather gaussian-like distribution of magnitude values which could possibly improve the learning procedure. For a more extensive explanation of feature representations and their pre-processing steps, also containing a list of related MIR studies, see \cite{Schluter2017, Choi2017b}.

The size of time-frequency input representations depends on the prediction time scale. For systems which have to classify data in real time, the input audio length cannot exceed the maximum allowed system latency, most often a single frame. In this case, the model architecture is restricted to 1-D convolutions along the frequency axis, ignoring temporal relationships if not incorporating any long or short term memory to the model in form of recurrent units.\footnote{Recurrent Neural Networks are out of this thesis’ scope. Further reading is provided by Goodfellow et al. \citeyear{Goodfellow2016}} Without depending on real-time predictions, several frames can be concatenated to time-frequency matrices, henceforth called blocks. The choice of frame and block length depends on the task at hand. While smaller analysis frames can capture finer temporal structures at the cost of losing frequency resolution, a broader analysis scope can identify correlations on a larger timescale and include more context for the system. Multiscale representations present a possible solution to integrate several spectograms with different resolutions at the same time. \cite{Hamel2012} has introduced this approach which was further adapted by \cite{Dieleman2013}, incorporating Gaussian and Laplacian pyramids. The representations at different time scales can also serve as an input for different CNN architectures, for example to aggregate features of different scales and layers to build more powerful classifiers \cite{Lee2017}. Independent from the computation parameters, matrix representations allow for 2-D convolutions by sliding various filter kernels over the time and frequency domain simultaneously.

2.2.3.3 Network design

Although spectral images are often compared to their visual counterparts, they comprise different structures. Real world pictures show high local correlations regarding colour and intensity in both dimensions, representing objects or parts. In comparison, spectrograms are mostly correlated along a single axis, either due to harmonic content or transient behaviour. While the advantage of scaling and rotation invariance due to convolutional network layers does not apply to spectral audio representations in the same way, translation invariance in both directions is of crucial importance to detect...
time shifted or pitched structures of its own kind [Choi et al., 2017b]. Even though relatively small rectangular filter shapes have proven to work reasonably well in practice, [Pons et al., 2016] recommend employing musically motivated filters with adapted and different receptive fields in the same convolutive layer to improve performance results for automatic music tagging and timbre analysis [Pons et al., 2016] or genre recognition [Pons and Serra, 2017]. By using shallow architectures and a relatively small amount of trainable parameters, those approaches are less prone to overfitting, reduce computational complexity and especially scale well to small datasets.

As long as learning approaches are based on mid-level representations, design principles for convolutional layers still highly depend on the task at hand. Some networks are adapted or even fully designed towards a particular task which again requires domain expertise within the related field. Other hyperparameters to tune the network are the number of filters and the employment of strided convolutions [Choi et al., 2017b]. Besides choosing appropriate filter kernels, deep learning models can further vary in terms of layer types or network depth. The possibilities to design ConvNets for MIR are manifold. Iteratively determining hyperparameters would require an enormous amount of computational power, depending on the dataset size. Recent machine learning research also focuses on building network structures that optimize their design hyperparameters automatically for further improvement [Gu et al., 2017].

2.2.3.4 Transfer learning

The main prerequisite to solve machine learning problems is the availability of large datasets. Unfortunately, data is more than sparse for a lot of MIR tasks. In computer vision, this challenge has been tackled by transfer learning. Models like AlexNet [Krizhevsky et al., 2012] which were trained on huge datasets can be re-utilized for similar image recognition tasks where less training material is available in order to bypass the shortage of data. In general, the concept of transfer learning describes the employment of learned features from a source task and applies those features for a different but related target task [Pan and Yang, 2010]. In particular, an already trained network is utilized to first extract features from a new but smaller dataset and afterwards employs those features for the target classification. The adaptation of the original network is often referred to as fine tuning. Transfer learning for MIR has not yet gained a lot of attention since large datasets are barely available. The Million Song Database [Bertin-Mahieux et al., 2011] which has been employed by [Van Den Oord et al., 2014] and [Choi et al., 2017c] for transfer learning towards a variety of audio-related target tasks constitutes the only big enough and publicly available dataset to apply this concept in the MIR domain. [Hamel et al., 2013] has explored an alternative technique by embedding features and labels from several datasets into a shared latent space with linear transformations. However, in comparison to computer vision where the employment of large and powerful models for different tasks is already state of the art, transfer learning for MIR still fails to be properly adapted due to the shortage of large datasets and the diversity of audio classification tasks.
2 Fundamentals and Related Work
3 Multi-track crosstalk reduction using spectral subtraction

While many music-related blind source separation methods focus on mono or stereo material, the detection and reduction of crosstalk in multi-track recordings is less researched. Crosstalk or ‘bleed’ of one recorded channel in another is a very common phenomenon in specific genres such as jazz and classical, where all instrumentalists are recorded simultaneously. We present an efficient algorithm that estimates the crosstalk amount in the spectral domain and applies spectral subtraction to remove it. Randomly generated artificial mixtures from various anechoic orchestral source material were employed to develop and evaluate the algorithm, which scores an average SIR-Gain result of 15.14 dB on various datasets with different amounts of simulated crosstalk.

3.1 Introduction

In many real-world music performance recordings, bands and ensembles are recorded without perfect acoustic separation. As a result, microphones which were intended to capture a particular instrument also record nearby signals; these additional signals are referred to as crosstalk, spill, or bleed. Although mixing practices allow to integrate crosstalk into the final mix, there are many instances where a better separation of these tracks is desirable for mixing. Other applications such as correctly annotating audio data with activation values, crosstalk suppression in speech audio, or collecting audio data for classification, could benefit from this approach as well.

Established blind source separation methods for music are typically focused on mono or stereo content while employing techniques based on factorization algorithms like NMF [Lerch 2012, Müller 2007], ICA or PCA [Comon and Jutten 2010], Hidden-Markov-Models [Mysore et al. 2010], or spatial correlation [Ozerov et al. 2012]. More recent approaches also apply deep neural networks to train separation models [Chandna et al. 2017, Uhlich et al. 2015]. However, if there is single source material from recording scenes in form of multitrack data available, none of the methods mentioned above take advantage of this additional information since they are tailored for mono/stereo content.

The method presented in this paper focuses on cases where multi-track recordings of, e.g., classical ensembles are available. Clifford and Reiss [2011] have investigated a method for crosstalk cancellation for multiple sources by using delay estimation and centered adaptive filters. Both Kokkinis et al. [2012] and Prätzlich et al. [2015] estimate the spectral power density of each voice and then apply a Wiener filter for crosstalk reduction.
In the proposed system, the crosstalk on a particular track is modeled as a weighted sum of the remaining tracks of this recording. The amount of crosstalk between each pair of tracks is estimated by minimizing a cost function based on spectral energy content through gradient descent with momentum [Sutskever et al., 2013]. As an alternative to Wiener filtering, the crosstalk is then removed through spectral subtraction [Boll, 1979].

For evaluation purposes, various datasets of anechoic orchestral multi-track recordings [Pätynen et al., 2008] are used to create artificial mixtures with different amounts of crosstalk (-18 dB, -12 dB and -6 dB). These artificial mixtures will be referred to as mixture tracks. Results are evaluated in two ways: by comparing the mixing matrix to the estimated spectral subtraction weights via correlation and by computing the standard blind source separation performance metrics SDR, SIR, and SAR [Vincent et al., 2006].

Figure 3.1: Processing steps of the crosstalk reduction algorithm
3.2 Method

The main processing steps of the presented method are displayed in the flowchart in Fig. 4.1. First, a frequency domain representation of the multi-track data is computed by STFT. The crosstalk estimation algorithm models the crosstalk on a particular mixture track as a weighted sum of the other tracks. This estimation process employs an optimization technique based on gradient descent to minimize a spectral energy cost function. After the spectral subtraction, the crosstalk-reduced magnitude spectrogram is recom-bined with its original phase information to obtain the crosstalk-reduced audio data by inverse STFT. Let $X(j,n,k)$ denote the matrix containing the magnitude spectrogram of the j-th mixture track, calculated with a Hamming window (framesize 4096 samples, hopsize 2048 samples) with k representing the frequency bin index and n the time frame. The analysis window length is approx. 85 ms (at 48 kHz). The rationale behind using comparably long analysis frames is that short time delays have less effect on the crosstalk reduction method and can therefore be neglected. $X_{\text{mix},l}(n,k) = X(j=l, n,k)$ represents the spectrum of the l-th track with crosstalk.

3.2.1 Crosstalk estimation

This section outlines the process of estimating the amount of crosstalk from the multi-track data. For each target instrument l, the amount of crosstalk from all other tracks is estimated to derive the weighting factor $\lambda_{l,j}$ via gradient descent on a cost function $\Theta(\lambda)$ that aims to minimize the spectral crosstalk energy in the target mixture spectrum $X_{\text{red},l}(n,k)$, summed over all time frames N as well as all frequency bins K:

$$\Theta(\lambda) = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \left[X_{\text{mix},l}(n,k) - \sum_{j=1, j\neq l}^{J} \lambda_{l,j} \cdot X(j,n,k) \right]^2$$

(3.1)

A correction factor $1/N$ accounts for different track lengths. The gradient for $\lambda_{l,i}(m)$ in iteration step m is then given by:

$$\frac{\partial \Theta(\lambda_{l,i}(m))}{\partial \lambda_{l,i}(m)} = -\frac{2}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \left[X_{\text{mix},l}(n,k) - \sum_{j=1, j\neq l}^{J} \lambda_{l,j}(m) \cdot X(j,n,k) \right] \cdot X(i,n,k).$$

(3.2)

The update rule with momentum [Sutskever et al., 2013] is defined by:

$$\lambda_{l,i}(m+1) = \lambda_{l,i}(m) - \gamma(m) \cdot v(m + 1).$$

(3.3)
The adaptation v is computed as:

$$v(m + 1) = \beta \cdot v(m) + \frac{\partial \Theta(\lambda_{l,j}(m))}{\partial \lambda_{l,j}(m)}$$

(3.4)

with β as the momentum parameter, sometimes called friction, set to 0.8. The learning rate γ slightly decreases in each iteration step m:

$$\gamma(m + 1) = 0.99 \cdot \gamma(m)$$

(3.5)

with an initial value of $\gamma(0) = 0.001$. Convergence is reached if the stepwise optimization of cost function $\Theta(\lambda(m))$ falls below a certain threshold δ:

$$\Theta(\lambda(m + 1)) - \Theta(\lambda(m)) < \delta.$$

(3.6)

The gradient descent algorithm aims to find the $\lambda_{l,j}$ that guarantee the lowest overall power within the spectrum $X_{red,l}$ according to the cost function $\Theta(\lambda)$. By utilizing this approach, $\lambda_{l,j}$ adapts to the relative crosstalk amount of the different mixture tracks during the crosstalk estimation. All weighting factors $\lambda_{l,j}$ smaller than zero are automatically set to zero during the gradient descent process.

Table 3.1 shows an entire set of $\lambda_{l,j}$ values for a dataset with nine tracks. The first row displays all estimated weighting factors $\lambda_{\text{bassoon},j}$ that have to be subtracted from the bassoon track to minimize crosstalk.

<table>
<thead>
<tr>
<th>$\lambda_{l,j}$</th>
<th>bassoon</th>
<th>clarinet</th>
<th>bass</th>
<th>flute</th>
<th>f_horn</th>
<th>sopran</th>
<th>viola</th>
<th>violin</th>
<th>cello</th>
</tr>
</thead>
<tbody>
<tr>
<td>bassoon</td>
<td>0</td>
<td>0.208</td>
<td>0</td>
<td>0.141</td>
<td>0.314</td>
<td>0.046</td>
<td>0.086</td>
<td>0.147</td>
<td>0.058</td>
</tr>
<tr>
<td>clarinet</td>
<td>0.182</td>
<td>0</td>
<td>0.07</td>
<td>0.119</td>
<td>0.18</td>
<td>0.065</td>
<td>0</td>
<td>0.105</td>
<td>0.072</td>
</tr>
<tr>
<td>bass</td>
<td>0</td>
<td>0.073</td>
<td>0</td>
<td>0</td>
<td>0.298</td>
<td>0.114</td>
<td>0.03</td>
<td>0.18</td>
<td>0.287</td>
</tr>
<tr>
<td>flute</td>
<td>0.065</td>
<td>0.062</td>
<td>0</td>
<td>0</td>
<td>0.204</td>
<td>0.017</td>
<td>0</td>
<td>0.112</td>
<td>0</td>
</tr>
<tr>
<td>f_horn</td>
<td>0.095</td>
<td>0.066</td>
<td>0.086</td>
<td>0.14</td>
<td>0</td>
<td>0.031</td>
<td>0.141</td>
<td>0</td>
<td>0.059</td>
</tr>
<tr>
<td>sopran</td>
<td>0.053</td>
<td>0.085</td>
<td>0.118</td>
<td>0.054</td>
<td>0.118</td>
<td>0</td>
<td>0.102</td>
<td>0.084</td>
<td>0.017</td>
</tr>
<tr>
<td>viola</td>
<td>0.059</td>
<td>0</td>
<td>0.022</td>
<td>0</td>
<td>0.4</td>
<td>0.078</td>
<td>0</td>
<td>0.2</td>
<td>0.157</td>
</tr>
<tr>
<td>violin</td>
<td>0.102</td>
<td>0.089</td>
<td>0.122</td>
<td>0.179</td>
<td>0</td>
<td>0.054</td>
<td>0.166</td>
<td>0</td>
<td>0.065</td>
</tr>
<tr>
<td>cello</td>
<td>0.047</td>
<td>0.062</td>
<td>0.185</td>
<td>0</td>
<td>0.135</td>
<td>0.011</td>
<td>0.128</td>
<td>0.063</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.1: Example matrix for estimated $\lambda_{l,j}$ values, computed by the gradient descent algorithm.
3.2 Method

3.2.2 Crosstalk reduction

After estimating the weight factors for all the bleeding instruments for each track as outlined in Sect. 3.2.1, a sum of their weighted magnitude spectra can be subtracted from \(X_{\text{mix},l}(n,k) \) by simple spectral subtraction [Boll 1979]. The result with reduced crosstalk \(X_{\text{red},l}(n,k) \) is therefore calculated as

\[
X_{\text{red},l}(n,k) = X_{\text{mix},l}(n,k) - \sum_{j=1, j \neq l}^{J} \lambda_{l,j} \cdot X(j,n,k),
\]

(3.7)

where \(J \) represents the total number of tracks. The weighting factor \(\lambda_{l,j} \) is estimated from the spectrograms as explained below. If the subtraction results in negative spectrum values in \(X_{\text{red},l}(n,k) \), they will be set to zero. Finally, the reduced magnitude spectrum is combined with the original phase information from the STFT analysis to obtain the crosstalk-reduced audio file by inverse Fourier transform.

Figure 3.2 displays example results of the process described for one excerpt from the dataset. The left graphic shows the magnitude spectrogram of a single clean bassoon signal \(X_{\text{dry},\text{bassoon}} \), the plot in the middle represents the magnitude spectrogram of the same signal with crosstalk \(X_{\text{mix},\text{bassoon}} \), and the result with reduced crosstalk \(X_{\text{red},\text{bassoon}} \) is shown on the right. All spectrograms are in logarithmic dB scale.

![Dry spectrum](Dry_spectrum.png) ![Mixture spectrum](Mixture_spectrum.png) ![Reduced spectrum](Reduced_spectrum.png)

Figure 3.2: Three different magnitude spectra excerpts from the unmixed original bassoon track (left), the artificially generated bassoon mixture with 6 dB crosstalk (middle) and the crosstalk reduced track (right)
3 Multi-track crosstalk reduction using spectral subtraction

3.3 Evaluation

There exist no standardized datasets or evaluation methods for the tasks of crosstalk estimation and reduction for multi-track data. A dataset for these tasks should allow for full control over parameters in the mixing process such as the amount and combination of crosstalk. The multi-track recordings used to create the dataset used in this study are from anechoic symphonic recordings.

Two different metrics are used to evaluate the two main processing blocks of the presented algorithm, respectively. First, the correlation coefficient is computed between the estimated lambda values and a transformed mixing matrix to evaluate the crosstalk estimation. Second, established blind source separation measures (SDR, SIR, and SAR, see below) are used on the audio results to evaluate the overall system.

3.3.1 Dataset

The dataset is created from excerpts from four orchestral anechoic multi-track recordings [Pätyinen et al., 2008]:

- Beethoven: Symphony no. 7, I mov. (3:11 min):
 11 Parts: Flutes, Oboes, Clarinets, Bassoon, French horns, Trumpets, Timpani, Violin, Viola, Cello, Contrabass

- Bruckner: Symphony no. 8, II mov. (1:27 min):
 13 Parts: Flutes, Oboes, Clarinets, Bassoon, French horns, Trumpets, Trombones, Tuba, Timpani, Violin, Viola, Cello, Contrabass

- Mahler: Symphony no. 1, IV mov. (2:12 min):
 14 Parts: Flutes, Oboes, Clarinets, Bassoon, French horns, Trumpets, Trombones, Tuba, Timpani, Percussions, Violin, Viola, Cello, Contrabass

- Mozart: An aria of Donna Elvira from the opera Don Giovanni (3:47 min):
 9 Parts: Flute, Clarinet, Bassoon, French horns, Violin, Viola, Cello, Contrabass, Soprano

For each of these four pieces, three different mixture sets are constructed with a randomly generated mixing matrix. This mixing matrix has ones on the diagonal and positive values elsewhere that are limited to a defined maximum crosstalk value for the remaining elements. The three mixture sets have a different maximum crosstalk amount: -6 dB, -12 dB, and -18 dB, which relates to maximum mix factors of 0.5, 0.25, and 0.126, respectively. Table 3.2 shows an example mixing matrix (-18 dB dataset of the Mozart piece). Every row shows the contributions of each input track to one mixture track. The first row, for example, contains all fractions of the solo anechoic instrument tracks that are combined to the artificial bassoon mixture. A symmetric mixing matrix ensures that, for example, the scaling factor of the bassoon instrument on the clarinet mixture track equals the factor of the clarinet instrument on the bassoon mixture track. It is important to note that these mixing values are scaling factors that are independent of
the individual track’s activity and loudness; thus, the actual amount of crosstalk is not necessarily reflected through the mixing matrix value.

Time delays are then calculated according to the reciprocal quadratic relation of distance and amplitude in the free field and accounted for in the mixing process. The reference amplitudes $A = 1$ (diagonal elements in the mixing matrix) correspond to a distance of 1 m. Finally, all mixture tracks are normalized to the maximum amplitude of the loudest mixture to preserve the mixing matrix relations.

<table>
<thead>
<tr>
<th>bassoon_mix</th>
<th>clarinet</th>
<th>bass</th>
<th>flute</th>
<th>f_horn</th>
<th>sopran</th>
<th>viola</th>
<th>violin</th>
<th>cello</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.097</td>
<td>0.051</td>
<td>0.085</td>
<td>0.088</td>
<td>0.066</td>
<td>0.074</td>
<td>0.097</td>
<td>0.026</td>
</tr>
<tr>
<td>clarinet_mix</td>
<td>0.097</td>
<td>1</td>
<td>0.094</td>
<td>0.062</td>
<td>0.073</td>
<td>0.06</td>
<td>0.031</td>
<td>0.073</td>
</tr>
<tr>
<td>bass_mix</td>
<td>0.051</td>
<td>0.094</td>
<td>1</td>
<td>0.024</td>
<td>0.103</td>
<td>0.101</td>
<td>0.084</td>
<td>0.117</td>
</tr>
<tr>
<td>flute_mix</td>
<td>0.085</td>
<td>0.062</td>
<td>0.024</td>
<td>1</td>
<td>0.111</td>
<td>0.029</td>
<td>0.011</td>
<td>0.073</td>
</tr>
<tr>
<td>f_horn_mix</td>
<td>0.088</td>
<td>0.073</td>
<td>0.103</td>
<td>0.111</td>
<td>1</td>
<td>0.063</td>
<td>0.079</td>
<td>0.002</td>
</tr>
<tr>
<td>sopran_mix</td>
<td>0.066</td>
<td>0.06</td>
<td>0.101</td>
<td>0.029</td>
<td>0.063</td>
<td>1</td>
<td>0.083</td>
<td>0.015</td>
</tr>
<tr>
<td>viola_mix</td>
<td>0.074</td>
<td>0.031</td>
<td>0.084</td>
<td>0.011</td>
<td>0.079</td>
<td>0.083</td>
<td>1</td>
<td>0.109</td>
</tr>
<tr>
<td>violin_mix</td>
<td>0.097</td>
<td>0.073</td>
<td>0.117</td>
<td>0.073</td>
<td>0.002</td>
<td>0.015</td>
<td>0.109</td>
<td>1</td>
</tr>
<tr>
<td>cello_mix</td>
<td>0.026</td>
<td>0.07</td>
<td>0.079</td>
<td>0.004</td>
<td>0.077</td>
<td>0.046</td>
<td>0.006</td>
<td>0.062</td>
</tr>
</tbody>
</table>

Table 3.2: Randomly generated mixing matrix for the -18 dB Mozart dataset, maximal values of 0.126

3.3.2 Correlation results

The mixing procedure may be represented as a system of linear equations $A\mathbf{x} = \mathbf{b}$ in which A is the mixing matrix, \mathbf{x} represents the vector of unmixed instrument tracks and \mathbf{b} describes the mixture vector. Solving this equation for \mathbf{x} leads to the de-mixing matrix A^{-1}. The spectral subtraction Eq. (3.7) can be seen as related to this system of linear equations, where the $\lambda_{i,j}$ matrix (see Table 3.1) represents an estimation of this inverted matrix with flipped signs and empty diagonal. For the sake of concise notation, we will refer to $\lambda_{i,j}$ as \mathbf{L} from now on. Similar to the mixing operation, we thus get a similar system of linear equations $\mathbf{x} \approx (-\mathbf{L} + \mathbf{I})\mathbf{b}$ and it follows that $A^{-1} \approx -\mathbf{L} + \mathbf{I}$.

The matrices cannot be expected to be identical even in the best case as time delays were introduced when creating the dataset, however, the correlation between A^{-1} and $(-\mathbf{L} + \mathbf{I})$ should be high if the estimation works. Table 3.3 shows the correlation results for each of the three mixture sets, averaged over all four orchestral pieces. While the -12 dB and -18 dB sets both show very high correlation values of at least 0.9 over all four pieces with barely any variation, the -6 dB sets perform comparably bad for all pieces except the Mozart one. While the Mahler -6 dB set still shows a correlation of about 0.75, the two other sets show only correlation values between 0.6 and 0.437.
3 Multi-track crosstalk reduction using spectral subtraction

<table>
<thead>
<tr>
<th></th>
<th>-6dB</th>
<th>-12dB</th>
<th>-18dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beethoven</td>
<td>0.437</td>
<td>0.964</td>
<td>0.933</td>
</tr>
<tr>
<td>Bruckner</td>
<td>0.595</td>
<td>0.961</td>
<td>0.941</td>
</tr>
<tr>
<td>Mahler</td>
<td>0.752</td>
<td>0.931</td>
<td>0.900</td>
</tr>
<tr>
<td>Mozart</td>
<td>0.932</td>
<td>0.973</td>
<td>0.976</td>
</tr>
<tr>
<td>Average</td>
<td>0.678</td>
<td>0.957</td>
<td>0.937</td>
</tr>
</tbody>
</table>

Table 3.3: Correlation of A^{-1} and $(-L + I)$

3.3.3 BSS Eval results

In order to evaluate the crosstalk suppression, the blind source separation (BSS) evaluation measures signal-to-distortion-ratio (SDR), signal-to-interference-ratio (SIR), and signal-to-artifacts-ratio (SAR) [Vincent et al., 2006] were computed and investigated. These measures have become standard metrics for the evaluation of blind source separation systems, for example, in the SiSEC campaign[1]. Since the present approach processes multi-track data as opposed to most BSS methods which work with mono or stereo content, the following results cannot be compared directly to other studies. BSS evaluation metrics are highly dependent on the datasets used for separation (or crosstalk reduction). For this reason, a comparison of BSS Eval measures of the mixtures and the actual crosstalk reduced audio files seems more suitable to get a better insight of the algorithm performance. Table 3.4 shows the BSS Eval measures of mixtures and crosstalk reduced tracks as well as their difference.

<table>
<thead>
<tr>
<th>Mixture</th>
<th>SDR</th>
<th>SIR</th>
<th>SAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6 dB</td>
<td>0.04</td>
<td>5.79</td>
<td>48.05</td>
</tr>
<tr>
<td>-12 dB</td>
<td>0.788</td>
<td>13.3</td>
<td>39.56</td>
</tr>
<tr>
<td>-18 dB</td>
<td>13.75</td>
<td>15.49</td>
<td>31.53</td>
</tr>
</tbody>
</table>

Table 3.4: BSS evaluation measures for mixtures, crosstalk reduced tracks and their difference, sorted by dataset and averaged over all four orchestral pieces

SDR and SIR measures for the mixture tracks show very similar values, ranging from 0 dB to about 12 dB according to the intervals given by the datasets. The SAR values for those vary from 48 dB down to about 31.5 dB in equal distance. For both the -6 dB and -12 dB mixture sets the crosstalk reduced audio tracks show SDR improvements of about 7–8 dB while the -18 dB sets only gain about 3 dB. The difference in terms of SIR measures is very similar, all sets show improvements in the range of 13–16 dB. Changes

1http://sisec.inria.fr, last accessed March 6, 2018
regarding the SAR values depend more on the mixture set. While the SAR measure drops heavily for the -6 dB set, the -12 dB set shows a negative gain of about 26 dB and the -18 dB SAR value only decreases by 16 dB.

To investigate the variation of the BSS Eval measures for different music pieces, Table 3.5 displays the SDR/SIR difference of mixtures and crosstalk-reduced tracks as well as the absolute SAR scores for the crosstalk reduced results. SDR values increase nearly uniformly over all four orchestral pieces. While the increase for the -6 dB and -12 dB mixture sets ranges from 6 dB to 9 dB, the difference regarding the -18 dB mixture set only results in about 2–4 dB. SIR values are even more evenly distributed: most results lie in the interval of about 14–16 dB except the Bruckner/Beethoven values for the -6 dB dataset (10–11 dB) and all Mozart scores which are about 4 dB higher.

SAR values, in turn, quantify the musical noise in the crosstalk-reduced audio tracks. Similar to the SDR/SIR gain results, the metrics especially vary for the -6 dB mixture set, where the values range from 9 dB to about 12.5 dB. Results constantly increase for the mixture sets with lower crosstalk, although the improvement from the -6 dB to -12 dB sets is more distinct than from -12 dB to -18 dB. Again, the Mozart pieces have the best results being about 3 dB higher than the other pieces.

Table 3.5: SDR/SIR gain for each mixture set as well as absolute SAR values of the crosstalk reduced results

<table>
<thead>
<tr>
<th></th>
<th>SDR gain</th>
<th></th>
<th>SIR gain</th>
<th></th>
<th>SAR absolute (results)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-6 dB</td>
<td>-12 dB</td>
<td>-18 dB</td>
<td>-6 dB</td>
<td>-12 dB</td>
</tr>
<tr>
<td>Beeth.</td>
<td>7.53</td>
<td>7.33</td>
<td>3.5</td>
<td>11.21</td>
<td>15.83</td>
</tr>
<tr>
<td>Mozart</td>
<td>9.14</td>
<td>7.31</td>
<td>3.92</td>
<td>17.03</td>
<td>19.59</td>
</tr>
</tbody>
</table>

3.4 Discussion

The results of evaluation metrics show generally consistent trends. Very high correlation values of the de-mixing matrix \mathbf{A}^{-1} and $-(\mathbf{L} + \mathbf{I})$ for both the -12 dB and -18 dB dataset for all pieces validate the success of the presented approach and prove that the gradient descent algorithm finds suitable $\lambda_{l,j}$ values minimizing the cost function. Multiple runs with random initialization further indicate that the detected cost minima are actually global minima.

There exist multiple reasons explaining the variation of the results between the different pieces. First, the total amount of crosstalk is not equal between the pieces. This is shown by the SIR measure of the mixtures given in Table 3.6 as these values represent the actual amount of crosstalk. While the increase over mixtures is consistently
6 dB as expected, the variation between pieces amounts to up to 4 dB. There are two reasons for that. First, the way the mixing matrix is generated means that the resulting amount of crosstalk depends on the number of instrument tracks. Second, the mixing matrix only signifies the factor but the resulting amount of crosstalk also depends on the track content and distribution; for example, percussion or timpani mixture tracks often show very low SIR and SAR since events only occur rarely during the track. Therefore, the optimal solution for the minimization of the cost function using the spectral energy criterion produces relatively high $\lambda_{l,j}$ values which in turn result in a harsh spectral subtraction and more musical artifacts. Those artifacts are quantified in the SAR score (see Table 3.4).

Crosstalk reduction for instruments that have overlapping frequency ranges with a similar tonal character is harder than for instruments with a unique spectral signature. Sections where the whole ensemble plays simultaneously are more difficult to manage for the algorithm than solo parts of individual instruments. In all cases, the Mozart piece achieves the best performance scores. The SAR values of the three remaining pieces range about 3 dB in comparison the the Mozart piece, each one following the above mentioned relation so that the absolute SIR values increase in 6 dB steps towards the -18 dB datasets (see Table 3.6).

<table>
<thead>
<tr>
<th></th>
<th>-6dB</th>
<th>-12dB</th>
<th>-18dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beethoven</td>
<td>0.03</td>
<td>5.92</td>
<td>11.73</td>
</tr>
<tr>
<td>Bruckner</td>
<td>-1.35</td>
<td>5.1</td>
<td>11.46</td>
</tr>
<tr>
<td>Mahler</td>
<td>-0.91</td>
<td>3.81</td>
<td>10.81</td>
</tr>
<tr>
<td>Mozart</td>
<td>2.39</td>
<td>8.39</td>
<td>13.73</td>
</tr>
</tbody>
</table>

Table 3.6: Absolute SIR values of the mixtures

In general, the crosstalk reduction method generates promising results. Whether the algorithm is suitable for a specific use case highly depends on the application. For tasks such as annotating audio data with instrument activations, the amount of separation (compare SIR) is crucial while the actual audio quality is irrelevant. The amount of subtraction can be controlled by scaling the $\lambda_{l,j}$ values, which can be an advantage in this scenario. In other cases, such as mixing software or more consumer-oriented products, the amount of musical artifacts can be decreased by utilizing an improved separation approach. Possible such improvements could include filtering approaches [Ephraim and Malah, 1984, Lukin and Todd, 2007] or other musical noise suppression techniques [Goh et al., 1998, Esch and Vary, 2009] to reduce artifacts. Thresholding in the spectral or temporal domain could constitute another post-processing feasibility.

The generated dataset contains numerous different instruments which makes the task more challenging. To explore the applicability for a broader field of possible applications, the algorithm needs to be tested on different musical genres, for example with the MedleyDB [Bittner et al., 2014] or Mixing Secrets [Gururani and Lerch, 2017] dataset.
3.5 Summary

The present study has introduced a new method for crosstalk reduction applied to multi-track data such as multi-microphone ensemble recordings. In a first step, this approach estimates the amount of crosstalk from a particular mixture track with a weighted sum of the remaining tracks by iteratively minimizing a spectral cost function with gradient descent. Second, this weighted sum of remaining instruments is subtracted from the mixture track to perform the reduction. Combining the resulting magnitude spectrum with its original phase information allows to obtain the crosstalk-reduced audio data via inverse STFT. In order to evaluate the algorithm, various mixtures with different amounts of crosstalk were artificially generated from multiple anechoic orchestral recordings. Results were evaluated in two ways: first, by correlating the mixing matrices and the resulting lambda matrices containing the estimated crosstalk factors to investigate the crosstalk estimation itself, and second by employing the standard blind source separation evaluation metrics SDR, SIR, and SAR to evaluate the suppression. Both evaluation metrics showed promising results. Post-processing techniques such as filtering or noise suppression could further improve the algorithm by reducing artifacts. For possible applications in a wider musical scope, tests with more genres are recommended.
3 Multi-track crosstalk reduction using spectral subtraction
4 Investigating the influence of frame sizes in instrument identification systems based on convolutional neural networks

Identifying instruments in a given musical piece can help to improve recommender systems, implement new functions for music libraries or inform related tasks like source separation or score notation. The herein presented instrument identification systems are based upon a convolutional neural network system and trained on classical music multi-track data from the Berlin University of Arts. Labels and input features in form of mel-spectrograms are extracted in different time frames sizes to investigate the influence of frame size to classification performance. Besides a standard learning method, two different approaches to classify small time frames while learning on larger frames are investigated: sliding predictions and multiple instance learning. Results show a certain performance peak for frame sizes of about 2.7 seconds regarding this dataset and the applied learning settings. Using larger frame sizes to iteratively classify smaller frames only improves upon standard techniques in a limited frame size region. The employed multiple instance learning techniques cannot enhance classification performance.

4.1 Introduction

One of the characteristics of a musical piece is it’s instrumentation. Very often, the choice of instruments itself provides insights into the music era, genre or even particular artist of a given song. Therefore, information about a song’s instrumentation could improve Music Information Retrieval (MIR) tasks such as automatic tagging, user search requests in online music libraries or music recommendation in streaming services. Furthermore, knowledge about instruments and their properties can potentially improve other tasks such as source separation or automatic transcription by allowing these systems to adapt their parameters. Especially instrument recognition (IR) algorithms for polyphonic mixtures could be beneficial for such tasks since most popular or classical music recordings consist of those mixtures.

While humans, particularly musically trained experts, are able to analytically deconstruct music pieces into harmonic or rhythmic structures as well as their instrumentation, data-driven systems still struggle to solve this task sufficiently well. There exist multiple reasons for that. First, the instruments have to be identified in a complex polyphonic mixture of non-trivial sounds. Second, the number of different instruments throughout genres is large. Third, each musical instrument might offer a wide variability in terms of timbre, pitch, tuning, and playing techniques.
The present study is concerned with identifying instruments in polyphonic mixtures of classical music, both chamber and orchestra pieces within a corpus of 13 pre-defined classical instruments. One of the main challenges in such MIR and machine learning contexts is collecting a sufficiently large and diverse dataset to work with. Unfortunately, for classical polyphonic music, there do not exist any labeled datasets. Therefore, our dataset comprises a collection of multi-track recordings from concerts at Berlin University of Arts. Features and labels are extracted from these multi-tracks in order to train a classifier based on a convolutional neural network architecture. The extraction and learning process is carried out with various lengths of audio input snippets to investigate in which way this input length influences the classifier performance. Furthermore, two methods are presented and evaluated which allow for model predictions on short time scales, even though the labelling information and hence the learning process was carried out on a larger time scale. In this way, relatively inaccurate labels can still be utilized to give precise predictions.

4.2 Related work

Existing approaches to instrument identification differ in terms of methodology and source material. Generally, the identification task becomes harder the more instruments play simultaneously and the more those instruments are similar in their time-frequency patterns. Most studies either use single instrument notes or phrases that were recorded individually or polyphonic mixtures of all instruments playing together in an ensemble as in this work.

4.2.1 Monophonic instrument recognition

The analysis of individually recorded notes has been tackled with a variety of approaches on different datasets and instruments. As one of the first studies in this field, Eronen and Klapuri [2000] used Gaussian- and kNN-classifiers on a set of 43 engineered temporal and spectral features from 30 different orchestral instruments. This work is often referred to as baseline system and marks a first milestone in the research field of instrument recognition. Diment et al. [2013] investigated modified group delay features including phase information plus mel-frequency cepstral coefficients (MFCCs) on different sets up to 22 instruments from the RWC database [Goto et al., 2002]. Yu et al. [2014] employed sparse coding on cepstrum with temporal sum-pooling for classifying 10 instruments from the ParisTech dataset [Joder et al., 2009]. Park and Lee [2015] extract spectrogram images in combination with multi-resolution recurrence plots including phase information from different notes of 20 different instrument, taken from the UIOWA MIS database. Those are fed into a convolutional neural network to build a classifier. Han et al. [2016] propose a sparse coding approach to learn features from mel-spectrograms, extracted from single notes of 24 instruments from the RWC dataset [Goto et al., 2002], to train a support vector machine (SVM).

While formerly mentioned approaches focus on isolated notes, various studies have
also applied instrument recognition on monophonic solo phrases. Krishna and Sreenivasan [2004] utilized line spectral features combined with gaussian mixture models (GMM) to classify 14 individual instruments. Essid et al. [2004] also employed GMM on the task of classifying solo performances of five different instruments, but paired the approach with MFCCs and principal component analysis (PCA).

4.2.2 Polyphonic instrument recognition

High performance results for instrument recognition regarding monophonic source material have shifted the research focus more towards polyphonic mixtures. Heittola et al. [2009] focussed on synthesized mixtures containing randomly generated notes from 14 instruments, classifying those with a non-negative matrix factorization based source filter model with MFCCs and GMM. Kitahara et al. [2007] employed several spectral, temporal and modulation features combined with PCA and linear discriminant analysis (LDA) as classification methods. Duan et al. [2014] investigated mel-scale uniform discrete cepstrums as novel spectral representation with a radial basis function SVM. The approach was evaluated on randomly mixed chords from note samples of 13 different instruments, taken from the RWC database [Goto et al., 2002].

For many applications, a sufficient outcome from IR algorithms is determining a predominant instrument. Fuhrmann et al. [2009] and Bosch et al. [2012] use a large set of feature, paired with source separation methods as pre-processing step to identify such predominant instruments with individual SVM models for each instrument class.

In the domain of IR, machine learning efforts, especially convolutional neural networks (CNN) which include feature learning, have become more and more popular due to their success in the whole MIR domain [Choi et al., 2017b]. Regarding the task at hand several studies have already exploited this learning techniques for instrument recognition. Park and Lee [2015] introduce a feature approach with spectrogram plus so-called multi-resolution recurrence plots which incorporate the audio signal’s phase trajectory distances in matrix form to feed a multi-column CNN. Han et al. [2017] apply multi-convolutional-layer CNNs with single-label data to determine predominant instruments, hereby including a detailed evaluation of network architecture, analysis time windows and prediction configuration.

4.3 Methods

Similar to the above mentioned techniques, the herein proposed approach is also based on polyphonic source material. However the classification is not determining a predominant instrument but all instruments simultaneously in a multi-class and multi-label learning setting, which means multiple instruments can be classified at the same time. To summarize the methodology of this work, figure 4.1 shows a flowchart of the process. Each individual step is described in the following.
4.3.1 Pre-processing

All multi-track audio data was sampled with 44.1 kHz, converted to mono and normalized by its maximum value per track. Each track is divided into frames of \(n_S = 1024 \) samples (22.23 ms). A number of \(n_F \) frames are combined to blocks, hereafter called instances. In turn, \(n_I \) Instances are concatenated to a bag. This follows the Multiple Instance Learning terminology used by Herrera et al. [2016].

4.3.2 Labels

The multi-track files are split into two groups. While the stereo mixtures are used for extracting features, the remaining tracks, which are recordings from the individual
instruments such as spot microphone recordings, are processed to obtain the labelling information.

In the case of our dataset, those spot microphones contain a certain amount of crosstalk depending on the spatial layout of the ensemble as well as the concert hall. In most cases, the amount of crosstalk does not allow to determine the instrument activity from the original recordings. Therefore, a crosstalk reduction method for multi-track data was applied to the data [Seipel and Lerch, 2018]. After reducing the amount of crosstalk, a frame-wise calculation of the root mean square value yields an instrument activity (IA) value per frame. The instance IA in turn is the maximum of all frame-wise IA in that particular instance, a form of max-aggregation. The instance IA is then thresholded to produce a binary label per instance. The label was carried out on different instance sizes of a multiple of $n_F = 16$ ranging from 16 to 320 frames.

4.3.3 Input representation

Every multi-track stereo mixture is transformed to a spectral representation using the STFT and further processed by a mel filterbank [O’shaughnessy, 1987] to obtain a $n_M = 128$ band mel-spectrogram in the frequency range of 0–10000 Hz. The mel-scale representation has been proven superior to other spectral representations in many Music Information Retrieval tasks [Choi et al., 2017b]. The mel-spectrograms for each stereo mixture track are divided into instance-length pieces and serve as input audio features to the convolutional neural net. Similar to the label creation, the feature extraction was also carried out on different instance sizes of a multiple of $n_F = 16$ ranging from 16 to 320 frames.

4.3.4 Network architecture

The advantage of Convolutional Neural Nets (CNN) for audio classification is based on their ability to map feature inputs to a more compact representation by using layer-wise non-linear transformations. Convolutional layers introduce constraint connectivity patterns which are especially useful to detect locally correlated features, for example edges and lines in a spectrogram which represent single tones. Pooling layers ensure that a certain patterns like motifs or chords can be detected independent from its location in the spectrogram.

The employed architecture is adopted from [Han et al., 2017] which in turn was inspired by AlexNet [Krizhevsky et al., 2012] and VGGNet [Simonyan and Zisserman, 2014]. Table 4.1 displays an overview of the network architecture for a mel-spectrogram input with 16 frames. Compared to the approach of [Han et al., 2017], every input to the individual convolutional layers is zero padded with a size of 2×2 instead of 1×1. Otherwise the network structure is identical. It consists of four convolution blocks with an increasing number of filters (32, 64, 128, 256). Each block contains two convolutional layers with ReLu activation function plus above mentioned zero-padding beforehand, 3x3 max-pooling and 25% Dropout. At the end of the last convolution block, global max-pooling is applied before using a fully connected ReLu layer combined with 50% Dropout.
4 Investigating the influence of frame sizes in instrument identification systems based on convolutional neural networks

Finally, another fully-connected layer with sigmoid activation maps the network output to the labeling information.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Output size</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mel-spectrogram</td>
<td>128 x 16 x 1</td>
<td>0</td>
</tr>
<tr>
<td>2x2 Zero padding</td>
<td>132 x 20 x 1</td>
<td>0</td>
</tr>
<tr>
<td>3x3 Conv, 32 filters</td>
<td>130 x 18 x 32</td>
<td>320</td>
</tr>
<tr>
<td>2x2 Zero padding</td>
<td>134 x 22 x 32</td>
<td>0</td>
</tr>
<tr>
<td>3x3 Conv, 32 filters</td>
<td>132 x 20 x 32</td>
<td>9248</td>
</tr>
<tr>
<td>3x3 Max pooling</td>
<td>44 x 6 x 32</td>
<td>0</td>
</tr>
<tr>
<td>Dropout(0.25)</td>
<td>44 x 6 x 32</td>
<td>0</td>
</tr>
<tr>
<td>2x2 Zero padding</td>
<td>48 x 10 x 32</td>
<td>0</td>
</tr>
<tr>
<td>3x3 Conv, 64 filters</td>
<td>46 x 8 x 64</td>
<td>18496</td>
</tr>
<tr>
<td>2x2 Zero padding</td>
<td>50 x 12 x 64</td>
<td>0</td>
</tr>
<tr>
<td>3x3 Conv, 64 filters</td>
<td>48 x 10 x 64</td>
<td>36928</td>
</tr>
<tr>
<td>3x3 Max pooling</td>
<td>16 x 3 x 64</td>
<td>0</td>
</tr>
<tr>
<td>Dropout(0.25)</td>
<td>16 x 6 x 64</td>
<td>0</td>
</tr>
<tr>
<td>2x2 Zero padding</td>
<td>20 x 7 x 64</td>
<td>0</td>
</tr>
<tr>
<td>3x3 Conv, 128 filters</td>
<td>18 x 5 x 128</td>
<td>73856</td>
</tr>
<tr>
<td>2x2 Zero padding</td>
<td>22 x 9 x 128</td>
<td>0</td>
</tr>
<tr>
<td>3x3 Conv, 128 filters</td>
<td>20 x 7 x 128</td>
<td>147584</td>
</tr>
<tr>
<td>3x3 Max pooling</td>
<td>6 x 2 x 128</td>
<td>0</td>
</tr>
<tr>
<td>Dropout(0.25)</td>
<td>6 x 2 x 128</td>
<td>0</td>
</tr>
<tr>
<td>2x2 Zero padding</td>
<td>10 x 6 x 128</td>
<td>0</td>
</tr>
<tr>
<td>3x3 Conv, 256 filters</td>
<td>8 x 4 x 256</td>
<td>295168</td>
</tr>
<tr>
<td>2x2 Zero padding</td>
<td>12 x 8 x 256</td>
<td>0</td>
</tr>
<tr>
<td>3x3 Conv, 256 filters</td>
<td>10 x 6 x 256</td>
<td>590080</td>
</tr>
<tr>
<td>Global max pooling</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>Fully connected</td>
<td>1024</td>
<td>263168</td>
</tr>
<tr>
<td>Dropout(0.5)</td>
<td>1024</td>
<td>0</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>13</td>
<td>13325</td>
</tr>
<tr>
<td>Total</td>
<td>1.448.173</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1: Summary of network architecture for 128x16 input mel-spectrogram (1 instance)
4.3 Methods

4.3.5 Experimental design

This work is split into three experiments which include different training and test settings. In all cases the learning procedure was carried out on a NVIDIA GTX1060 (6GB memory) by optimizing the binary cross-entropy loss with the ADAM [Kingma and Ba, 2014] technique (learning rate = 0.001, no learning rate decay) and using a minibatch size of 64 samples over 10 epochs. As mentioned in Sect. 4.3.4, dropout [Srivastava et al., 2014] was applied to each convolutional block as well as previous to the final sigmoid layer to regularize the learning procedure and prevent overfitting.

Figure 4.2: Overview of MIL learning procedure of experiment 2

4.3.5.1 Experiment 1 - Standard learning

In the first experiment, training was performed in a common training setting with \(n_I = 1 \), so each bag only contains only one instance with a number of \(k \cdot 16 \cdot n_F \) spectrogram frames ranging from 16 to 320. The CNN architecture shown in Sect. 4.3.4 was employed. For testing, the model which was trained on a specific number of \(n_F \) frames was then also utilized to predict sections of the same number of \(n_F \) frames.
4.3.5.2 Experiment 2 - Sliding predictions

For the second experiment, the training phase equals the proceeding of experiment 1. However, at test time, models which were trained on larger number of spectrogram frames $n_{F,T}$ are utilized to predict spectrogram excerpts with a smaller number of frames $n_{F,P}$ by sliding the trained model over the test audio iteratively. For example, a model that was trained on $n_{F,T} = 48$ training frames is given the spectrogram patch of the first $n_{F,T} = 48$ frames of an audio signal, the prediction however is only valid for the $n_{F,P} = 16$ prediction frames in the center of the patch. Thereafter, the model is shifted $n_{F,P} = 16$ frames further to predict the following $n_{F,P} = 16$ prediction frames. With this method, models which were trained on larger spectrum inputs can still be used to predict on a finer time scale. For correct prediction, the audio signal need to be zero padded in the beginning and at the end with $(n_{F,T} - n_{F,P})/2$ frames.

4.3.5.3 Experiment 3 - Multiple Instance Learning

Similar to the previous approach, this experiment also targets the case that training labels are only available for larger time periods, but predictions need to be given on a finer time scale. For this reason, training was carried out using a multiple instance learning (MIL) setup with a wrapper approach [Herrera et al., 2016, pp. 68]. Figure 4.2 shows such a setup for an instance size of $n_F = 16$ frames and a bag size of $n_I = 3$ instances. Each of the three instances which consist of a $n_F = 16$ frames spectrogram is fed into an individual CNN presented in Sect. 4.3.4. The sigmoid outputs for each CNN are then combined with an averaging aggregation function H to 13 class activation that are connected to the bag label. The backpropagation runs through the aggregation function to the individual CNNs in order to optimize the weights regarding the bag labels when, in this case, three instance spectrograms are presented to the networks. With such a MIL setup, it is possible to learn on a bag level with its corresponding bag labels but predict at the instance-level. This procedure can be carried out with a larger number of frames per instance n_F as well as a larger number of instances per bag n_I. If $n_I = 1$, this setup corresponds to a standard learning procedure.

At test time, the last model layer, containing the aggregation function, is removed, so the model shows the individual CNN sigmoid activations for each instance. In the case above, when presenting the model with an input spectrogram of $n_F \cdot n_I = 48$ frames, it is able to obtain predictions for all $n_I = 3$ instances with $n_F = 16$ frames individually.

4.4 Evaluation

4.4.1 Dataset

The multi-track dataset comprises a variety of concerts recordings from the Berlin University of Arts. In total, the dataset contains 116 classical music pieces, either symphony or chamber music and includes various concert venues, composers, artists, and different instrumentations. As Table 4.2 displays, the total length of all pieces is 19.16 hours with
4.4 Evaluation

A corpus of 13 instruments. However, the dataset is unbalanced in terms of instrument occurrence throughout the pieces. While string instruments are nearly always present, both in chamber music and symphony pieces, other instruments such as the brass section can only be found in approximately a fifth of all pieces. For each piece, there exist a spot microphone track for every instrument as well as a stereo downmix. As usual in acoustically recorded music, the individual spot microphone tracks contain crosstalk. In order to avoid too optimistic results, the test/train split was carried out piece-wise to ensure that no parts of the same pieces are in both training and test set. The resulting training set includes 92 pieces, while the testing set comprises 23 tracks. Figure 4.3 shows the distribution of track lengths for all pieces.

![Distribution of Track Lengths](image)

Figure 4.3: Overview of track lengths in seconds in both test and training set together

4.4.2 Performance metrics

In the context of polyphonic instrument identification, different classes may occur in the same sample, or this case in the same instance, defining this task as a multi-class as well as multi-label problem. All metrics are calculated per track and averaged afterwards (macro). This macro approach normalizes the effect on different piece lengths, but at the same time, weights instances in shorter tracks.

4.4.2.1 Threshold dependent metrics

Since the dataset is imbalanced in terms of class/instrument distribution, the evaluation demands for metrics which are not influenced by such different class sizes. For this reason, the established evaluation metrics precision, recall and f1-score are calculated for each instrument class separately and then averaged over the individual classes. The sigmoid activation of each CNN produces a probability per class. A fixed threshold \(\sigma = 0.5 \), which has been found iteratively on maximizing the scores on the training
4 Investigating the influence of frame sizes in instrument identification systems based on convolutional neural networks

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Size[MB]</th>
<th>Hours</th>
<th>Tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassoon</td>
<td>2033.061</td>
<td>6.40</td>
<td>51</td>
</tr>
<tr>
<td>Clarinet</td>
<td>1997.021</td>
<td>6.28</td>
<td>48</td>
</tr>
<tr>
<td>Double Bass</td>
<td>2135.858</td>
<td>6.73</td>
<td>54</td>
</tr>
<tr>
<td>Flute</td>
<td>1342.118</td>
<td>4.23</td>
<td>39</td>
</tr>
<tr>
<td>French Horn</td>
<td>2033.061</td>
<td>6.40</td>
<td>51</td>
</tr>
<tr>
<td>Oboe</td>
<td>1523.016</td>
<td>4.80</td>
<td>39</td>
</tr>
<tr>
<td>Piano</td>
<td>3851.172</td>
<td>12.13</td>
<td>72</td>
</tr>
<tr>
<td>Trombone</td>
<td>834.472</td>
<td>2.63</td>
<td>28</td>
</tr>
<tr>
<td>Trumpet</td>
<td>834.472</td>
<td>2.63</td>
<td>28</td>
</tr>
<tr>
<td>Tuba</td>
<td>783.636</td>
<td>2.47</td>
<td>24</td>
</tr>
<tr>
<td>Viola</td>
<td>3611.268</td>
<td>11.37</td>
<td>75</td>
</tr>
<tr>
<td>Violin</td>
<td>4937.731</td>
<td>15.55</td>
<td>87</td>
</tr>
<tr>
<td>Violoncello</td>
<td>5399.067</td>
<td>17.00</td>
<td>104</td>
</tr>
<tr>
<td>Total/Mix</td>
<td>6082.926</td>
<td>19.16</td>
<td>116</td>
</tr>
</tbody>
</table>

Table 4.2: Overview of the dataset, separated by instrument

set, then defines how those activations are binarized and hence influences the prediction scores on the above mentioned metrics.

4.4.2.2 Threshold independent metrics

Another metric, which is independent from the given binarizing threshold, is the so called AUC. The AUC represents the Area Under The Receiver Operating Characteristic Curve which in turn evaluates the true positive against the false positive rate for various thresholds [Virtanen et al. 2018].
4.5 Results and Discussion

4.5.1 Experiment 1 - Standard learning

In the first experimental case, which is hereby referred to as standard learning, the classification results for varying frame sizes in between \(n_F = 16 \) (0.37 s) and \(n_F = 160 \) (3.70 s) were evaluated. The results, displayed in Figure 4.4, show to what extent the classification scores are dependent on the frame size of labels and features which were used for training the convolutional neural network. In general, the overall classifier performance throughout all measures improve until \(n_F = 112 \) (2.60 s) before they slightly decrease to higher frame size values. For this training setup, the network seems to need an appropriate amount of frames to learn characteristics of the different instruments which include both the attack, sustain and decay phase of tones or chords. In case of smaller receptive fields of only \(n_F = 16 \) or \(n_F = 32 \) frames the time window can be too small to capture the above mentioned temporal structure of tones produced by classical musical instruments. Furthermore, the difference in between recall and precision measure for smaller frames indicates a non-optimal binarizing threshold since the AUC score stays consistently at the same level. While this threshold was found by optimizing the scores for all frame sizes, an adaptive threshold for different frame sizes can improve the results here.

![Figure 4.4: Evaluation results for the standard learning approach](image)

4.5.2 Experiment 2 - Sliding predictions

The second approach describes a prediction method based on iteratively sliding the classifier over the audio material’s mel-spectrorams. Figure 4.5 shows the prediction frame size \(n_{F,P} \) on the x-axis while the different subplots denote the ratio of training to prediction frame size \(r = n_{F,T}/n_{F,P} \). The results for \(r = 1 \) equal the performance scores of the standard learning approach shown above. By increasing the ratio to \(r = 3 \), the larger receptive field of the classifier can improve the performance, especially for
smaller prediction frames $n_{F,P}$. However, with higher ratios of $r = 5$ and $r = 7$, the scores decrease consistently with rising prediction frame size which also relates to large training frame sizes then. This indicates that above a certain threshold, the training frame size seems to be too large to train the network efficiently. Additionally, the usage of such larger training frame sizes also decreases the overall samples for the training procedure which again can impair the learning procedure.

Figure 4.5: Evaluation results for sliding predictions

4.5.3 Experiment 3 - Multiple Instance Learning

Similar to the previous method, multiple instance learning with so called wrapper methods also targets to predict on small time frames while learning on larger input features and labels. The results for this experiment are shown in Figure 4.6 following the same structure than the previous approach. While the increase of the receptive field in the last experiment showed improvement, the MIL approach fails for both cases, using $n_I = 3$ as well as $n_I = 5$ instances. Possible reasons can include a non-optimal aggregation function or the inefficient training of parallel network architectures.
4.6 Summary

This work has investigated an instrument identification approach based on convolutional neural networks for classical music audio data. The network was trained on different audio frame sizes in order to investigate the influence of frame size on performance results. The overall processing steps include a crosstalk reduction pre-processing step on spot microphone recordings to correctly determine the individual instrument activities and subsequently extract labels. Features were generated in form of mel-spectrograms from the respective stereo mixture. The trained models for a standard learning approach show increasing performance until frame sizes of $n_F = 112$ are exceeded. In case of the sliding predictions approach, the usage of classifiers which were trained on larger frame size $n_{F,T}$ can enhance performance for small prediction frame sizes $n_{F,P}$ but cannot improve upon the standard approach for higher values of $n_{F,T}$ and $n_{F,T}$. The MIL method for this setup has proven unsuccessful for all learning parameters. Future work must therefore include an evaluation with various aggregation functions, a different dataset containing normalized track lengths and different genres for learning and test phase as well as an evaluation on both micro and macro level, also including more suitable measures for multi-label classification.
4 Investigating the influence of frame sizes in instrument identification systems based on convolutional neural networks
5 Conclusion

This master thesis has presented and investigated several convolutional neural network approaches to instrument recognition on polyphonic audio material and further introduced a crosstalk reduction method for multi-track audio.

The crosstalk reduction method was developed to clear multi-tracks from spill, a common phenomenon when recording acoustic ensembles in concert halls or studios. Besides its original purpose, the preparation of audio files to correctly extract labelling information, the algorithm can also serve as a de-noising method for multi-channel microphone input or as post production effect to clean multi-track audio recordings. The algorithm shows solid evaluation scores, in particular the improvement of the signal-to-interference ratio within the given dataset of artificially created mixtures from anechoic recordings. However, the algorithm also introduces musical artefacts as a result of the spectral subtraction. By scaling the reduction parameters, the algorithm can be adapted to its application purpose and in this way either improve the reduction at the cost of more musical artefacts or vice versa. A further investigation of the approach could involve different datasets with more musical genres and convolutive mixtures. Advanced post-processing like filtering in the spectral domain or thresholding in the time domain to reduce musical artefacts could further improve the algorithm.

In order to investigate instrument identification with convolutional neural networks three different experiments were designed. For all approaches, a multi-track classical music dataset incorporating 13 different instruments was employed. After applying the herein developed crosstalk reduction method on the spot microphone tracks, the individual instrument activities were first determined to then binarize those to labelling information. Features were extracted in form of mel-spectrograms from the according stereo mixtures. To examine the effects of frame size to classification performance, labels as well as features were generated with different frame sizes. After the training phase, the learned model is able to predict the instrument composition for the given frame size. For the present dataset and the employed learning settings, the best classifications scores were obtained for a frame size of about 2.7 seconds. Two different models based on sliding predictions and multiple instance learning were further investigated. While the former can improve classification for small frame sizes by utilizing classifiers which were trained on larger frames but only classify center frames, the latter does not show any enhancements. Future work includes the application of the above presented methods on different datasets and an investigation of the MIL approach, for example by using other aggregation functions. To understand the behaviour of the convolutional neural net for Instrument Identification a visualization of activations and weights might help to draw further conclusions.
5 Conclusion
List of Acronyms

AUC Area Under Curve
BSS Blind Source Separation
CNN Convolutional Neural Network
CQT Constant-Q Transform
FN False Negatives
FP False Positives
GD Gradient Descent
GMM Gaussian Mixture Model
ICA Independent Component Analysis
IA Instrument Activity
IR Instrument Recognition
kNN k-Nearest Neighbour
LDA Linear Discriminant Analysis
MFCC Mel Frequency Cepstral Coefficient
MIC Multi Instance Classification
MIDI Musical Instrument Digital Interface
MIL Multiple Instance Learning
MIR Music Information Retrieval
ML Machine Learning
MSE Mean Squared Error
NAG Nesterov Accelerated Gradient
NMF Non-negative Matrix Factorization
PCA Principal Component Analysis
ROC Receiver Operating Characteristics
SAR Signal-to-Artefacts-Ratio
SDR Signal-to-Distortion-Ratio
SIR Signal-to-Interference-Ratio
STFT Short Time Fourier Transform
SVM Support Vector Machine
TN True Negatives
TP True Positives
TTS Text to Speech

Bibliography

Bibliography

Bibliography

Bibliography

Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis C. Cobo, and Florian

