

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

Session 311

GenJam: Evolutionary Computation Gets a Gig

John A. Biles,

Information Technology Department, RIT

Abstract
GenJam (short for Genetic Jammer) is an evolutionary computation-based, real-time interactive
jazz improvisation agent. GenJam improvises spontaneous autonomous solos and performs
interactive and collective improvisation with a human performer by listening to what the human
improvises, mapping what it heard to its internal chromosome representation, and using
intelligent mutation and crossover operators to develop what the human plays into what it plays
in response.

After an overview of GenJam’s architecture in performance settings, this paper describes
GenJam’s chromosome structure for representing melodic material, and explains how it interacts
in real time with a human performer. Where GenJam gets its musical ideas is discussed next,
followed by HCI aspects from both the audience’s and the performer’s perspectives. Finally, a
discussion of GenJam as an IT application and a brief prediction of its future conclude the paper.

Introduction
Evolutionary Computation (EC) has emerged as a powerful computational paradigm for a wide
range of applications1. EC applies the principles of natural evolution and genetics to artificial
search problems by evolving a population of potential solutions, where each individual solution
in the population is represented by a chromosome-like structure. The fitter individuals in a
population are selected to breed new solutions using crossover and mutation, and over
succeeding generations of the population acceptable solutions emerge. The evolutionary
paradigm has been applied to creative domains in areas as diverse as visual art, architecture,
industrial design and music2.

GenJam3 applies evolutionary computation to jazz improvisation by evolving populations of
melodic fragments, or licks in the jazz vernacular, from which it constructs improvisations in real
time. GenJam’s repertoire currently exceeds 200 tunes in a variety of jazz, Latin and new age
styles, and performs regularly as a featured sideman in the author’s Virtual Quintet. Attendees to
this conference heard the Virtual Quintet perform at the conference reception Thursday evening.
This paper describes how GenJam works and, in the context of an IT conference, discusses HCI
issues and the IT philosophy of the GenJam project.

GenJam in Performance
A single execution of GenJam results in the performance of a single tune. Figure 1 shows
GenJam’s system architecture when performing a tune. GenJam reads several files that describe
the tune and its arrangement (the rectangles with solid arrows), either reads or builds two

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

interrelated populations of melodic ideas (the rectangles connected with dashed arrows), and,
during the performance, interacts with a human performer in a variety of ways (the Performer
oval).

GenJam4 160 S

C7

F7

C7

C7

F7

F7

C7

Em7 A7

Dm7

G7

C7 A7

Dm7 G7

i 2

h 1

r 1

s 1

4 1 2

h 1

t 2

Chord

Progression

Choruses

c 2 3 10 4 5 6 7

b 0 0 0 64 64 0 0

i 33 1 33 67 67 49 25

l 95 90 90 100 90 0 0

p 48 104 -1 80 64 48 24

MIDI Parameters

Head

Sequence

Rhythm

Sequence

Measure

Population

Phrase

Population

 Performer

 Improvisation Interactive

Response

Figure 1. System architecture of GenJam in performance

The Chord Progression text file describes the tune to be performed, including the tempo (160
beats per minute in Figure 1), whether to use swing or even eighth notes (the ‘S’ in the first line),
the octave range in which GenJam should play (the 4 in the first line indicates a tenor sax range),
and the chord progression of the tune (one measure per line, up to two chords per measure,
beginning with the second line).

The Choruses file describes what GenJam should do for each cycle of the form described by the
chord progression. The musical structure for most jazz performances is theme and variation,
where the soloists perform the original melody in the first and last choruses and improvise in the
middle choruses. The improvisations can be full-chorus solos by one soloist, “trading fours” or
eights, where two soloists take turns every four or eight bars, or collective improvisation, where
soloists improvise simultaneously. Spontaneous interactivity between soloists is a key ingredient
to a successful jazz performance, and GenJam accomplishes this, as indicated by the interaction
arrows with the Performer oval in Figure 1.

The Rhythm and Head Sequence files are standard MIDI files that provide the rhythm section
accompaniment and arranged harmony parts for the first and last choruses (the “head” in jazz

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

parlance). These are canned sequences that will be identical for each performance of the same
tune. The MIDI Parameters file configures the tone generator by indicating which instruments to
use for each part, how loud each should play, where in the stereo field they should be, and up to
30 other parameters.

The Measure and Phrase Populations are data structures that represent the melodic ideas from
which GenJam can construct improvisations. These populations are either read directly from text
files or constructed internally from a licks database, as will be described in the Woodshed
section. However, I will describe the representation of a four-measure phrase (which I refer to as
GenJam Normal Form or GJNF) now because it is central to understanding how GenJam
improvises.

GenJam Normal Form
Figure 2 illustrates a cooked-up example phrase embedded in the measure and phrase
populations. Our example phrase happens to be phrase number 23 (out of 48). It has a fitness of
–12, which means that it is regarded as a “bad” phrase (more on this in the Woodshed section).
The four numbers in measure 23’s chromosome are pointers into the measure population, which
means that phrase 23 consists of measure 57, followed by measure 57 again, followed by
measure 11, followed by measure 38.

 11 6 9 7 0 5 7 8 7 5

23 –12 57 57 11 38
 38 –4 7 8 7 7 15 15 15 0

 Phrase Population 57 22 9 7 0 5 7 15 15 0

 Measure Population

Figure 2. Example phrase3

Those three measures are shown in the Measure Population in Figure 2. The measure population
contains 64 individuals, each representing a sequence of eighth-note-length events. In 4/4 time
that works out to eight events per measure. Different versions of GenJam play in 3/4, 5/4, 12/8,
7/4, and 8/8 time, which lead to measure chromosomes of 6, 10, 12, 14 and 16 events,
respectively. In our example, measure 57 has a fitness of 22, which means that it has been
regarded as a “good” measure. That a good measure can occur in a bad phrase is due to the fact
that a given measure can occur in more than one phrase. Since there are 48 phrases, each
consisting of four measures, a given measure would be expected to occur three times, on
average, in the phrase population.

The events in a measure chromosome map to actual notes in real time during a performance.
There are three types of events. A rest event (represented by a 0) maps to a MIDI note-off event
when it is performed, which terminates any note begun earlier. A hold event (represented by a
15) maps to nothing, which results in the note or rest in the previous event being held through

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

this event. A new-note event (represented by 1-14) maps to a MIDI note-off followed
immediately by a MIDI note-on, where the note’s pitch is determined by using the event number
as an offset into roughly two octaves of the scale suggested by the current chord from the chord
progression. GenJam understands 18 different chord types, and the result is that GenJam cannot
play a theoretically wrong note.

Figure 3. Phrase from Figure 2 played against first four bars of tune from Figure 1.3

Figure 3 shows the phrase in Figure 2 played against the first four chords of the progression in
Figure 1. Notice that even though measure 57 is repeated in the first two measures, the resulting
notes are different because the chords (and therefore the resulting scales) are different. Notice
also that in the fourth measure, the repeated 7’s in chromosome positions 3 and 4 of measure 38
resulted in a Db for position 3, which is a chromatic passing tone. This is the result of a heuristic
to provide some chromatic color. When GenJam performs a full-chorus solo, then, it randomly
selects enough phrase individuals to fill up a chorus of the tune and simply plays them as just
described.

Interactivity
As mentioned above, spontaneous interaction between performers is a key ingredient of jazz.
Since the rhythm section is canned, there is no two-way interaction between it and the soloists,
but there is interaction between GenJam and a human soloist because GenJam can hear what the
human plays and use what it hears in its improvisations. This interactivity occurs in all of
GenJam’s improvisational modes, even full-chorus solos.

Trading fours is the easiest interactive mode to describe. When GenJam trades fours with a
human soloist, it listens to the human’s last four measures using a Roland GI-10 pitch-to-MIDI
converter, maps what it thought it heard to GJNF, mutates some or all of the chromosomes in the
last instant of the human’s four, and plays back the mutated phrase as its response in the next
four measures. Since the human’s four is mapped to GJNF, it doesn’t matter if the pitch tracker
(or the soloist) make errors because GenJam will map whatever it ends up with in the
chromosomes to reasonable notes in the context of the chord progression. Indeed, the human can
play random notes that may sound terrible, and GenJam will respond with a competent four.

A key to trading fours is for each soloist to develop what the other soloist played in the preceding
four, not just parrot what the other soloist played. GenJam does this by using a collection of
musically meaningful mutations. These mutations are really melodic development techniques
and not the usual flipping of the occasional bit. GenJam’s measure mutations include playing the
measure backward, playing it upside down, playing it backward and upside down, transposing it
up or down a random amount, and sorting the new-note events to create an ascending or
descending melodic line. Phrase mutations include playing the measures in reverse order,
rotating the measures, and repeating a measure. The key to these mutations is that they “do no

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

harm.” In other words, given a good human four, the mutations will result in a good four from
GenJam. In this respect, they can be considered intelligent mutations.

GenJam also has three collective improvisation modes in which it and the human improvise
simultaneously. In one such mode GenJam listens to the human’s current four as it plays the
human’s last four. This resembles trading fours except that GenJam plays every four, not every
other four, and GenJam does not mutate what it hears the human play. Eliminating mutation is
necessary because in collective improvisation, the players must complement each other in real
time, which means that the human soloist must remember his last four and play off of it in his
next four. If the human’s last four were mutated, the result would be a “moving target” for the
human soloist.

The other two collective improvisation modes are an “echo” mode, where GenJam plays the
human’s last measure as its next measure, and a “delay” mode, where GenJam sets up a delay
line of a selectable number of events and plays back the human’s improvisation, delayed by that
number of events. Again, no mutations are used, and in this case only one measure chromosome
is needed to store the human’s improvisation. The collective improvisation modes have become
a favorite challenge for the performer, as I’ll describe in the HCI section.

The final piece of interactivity occurs in full-chorus solos. When the human takes a full-chorus
solo, GenJam listens to each measure of the human’s solo, maps it to a measure chromosome,
and then does an intelligent selection and crossover with an individual in the measure population.
The mate for the human’s measure is selected by choosing an individual from the measure
population whose first and last new-note events most closely match those in the human’s
measure. The intelligent crossover picks a crossover point such that the horizontal intervals
between adjacent notes in the children will end up as small as possible. After crossover, the
child whose first and last new-note events most closely match those in the measure selected from
the measure population replaces that measure in the measure population. This results in the
measure population being subtly influenced by the human’s solo without disrupting the melodic
flow of the phrases.

GenJam in the Woodshed
So where do those individuals in the measure and phrase in the populations come from, or in
musical terms, where does GenJam get its ideas? Jazz players often refer to long hours “in the
woodshed” when describing the hard work of acquiring improvisational ideas and skills. Two
classic woodshed activities are transcribing and then memorizing jazz solos of the masters, and
trying out one’s own ideas, often with the aid of music-minus-one records. GenJam uses
adaptations of both activities to build its measure and phrase populations, but each activity leads
to a different version of GenJam.

The original version of GenJam3 is an interactive genetic algorithm (IGA), which requires a
human mentor to provide fitness for each individual. IGAs are common in creative domains
where the worth of an individual is an aesthetic judgment that can’t be encoded in an algorithm.
Figure 4 shows how a human mentor trains a GenJam soloist with an IGA. In this version the
measure and phrase populations are stored as explicit text files. When GenJam is executed, these

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

files are read into the internal data structures for the populations. To train GenJam, its mentor
creates an arrangement for a tune in which every chorus is a GenJam solo. As GenJam
improvises, the mentor listens and provides feedback in real time by typing ‘g’ for good and ‘b’
for bad. Each time the mentor types a ‘g’, the fitness for the currently playing measure and
phrase individuals is incremented by 1. When the mentor types a ‘b’, those fitness values are
decremented.

GenJam

Measure

Population

Phrase

Population

 Mentor

‘g’ or ‘b’

Solo

Figure 4. Training GenJam with an IGA

A typical training session begins with randomly generated initial populations (generation 0) and
proceeds with a sequence of tunes, each tune resulting in a new generation. Both the measure
and phrase populations evolve with the children of the better individuals replacing the worse
individuals of the previous generation. The algorithm for creating new individuals is:

Select 4 individuals at random to form a family (tournament selection)
Select the 2 family members with the greatest fitness to be parents
Perform a single-point crossover between the chromosomes for the two parents
Mutate one of the resulting 2 children
Replace the two non-parent family members with the new children in the population

In a single generation half of the individuals in each population are replaced (a 50% generation
gap). This has the effect of preserving favored licks and replacing undesirable licks with
variations of favored licks. It also can result in convergence on minor variations of a few super
licks4. Convergence on a single best individual is highly desirable in standard GAs, but in
GenJam such convergence results in a small set of overused ideas, which actually does model the
behavior of some jazz players the author has encountered at jam sessions but is certainly not
preferable in a sideman. To combat convergence GenJam uses diversity mutation operators and
heuristics to insure that new children are sufficiently different from existing population
members. Another problem with this version of GenJam is the fitness bottleneck formed by the
necessity for the mentor to experience each individual in both populations in order to provide
fitness. This fitness bottleneck is notorious in IGAs5.

The other version of GenJam6 eliminates this fitness bottleneck by eliminating fitness entirely.
This rather radical departure from the standard EC paradigm makes GenJam an autonomous
agent but calls into question its status as an EC system. The EC paradigm can be viewed as a
generate-and-test paradigm, where the generators (initialization, crossover, mutation, selection,

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

replacement) are typically dumb (usually random, which is about as dumb as you can get), and
the testing (fitness) is very smart. In fact, fitness is the only intelligent component in standard
EC systems.

The meta-evolution of GenJam from an IGA to an autonomous agent is an interesting story.
When developing GenJam’s interactive capabilities, specifically trading fours, it became quickly
evident that there could be no fitness in that process because there was no way for a mentor to
provide fitness in time for GenJam to perform the four it had just built. Indeed there is only a
1/32 note interval between the time when GenJam has built the chromosomes (GJNF) of the
human’s four and the time when it must play the mutated four as its response. This puts pressure
on the mutation operators to always generate good results, given a reasonable (or even an
unreasonable) four from the human. Consequently, the intelligence is in the mutations. When
trading fours, GenJam always plays a competent four and often comes up with a truly stimulating
four without the need for fitness.

Extending this idea into GenJam’s measure and phrase populations, if GenJam initialized its
populations with individuals that sounded good and performed intelligent crossovers and
mutations that guaranteed pleasing variations, there would be no need for a mentor. In other
words, if GenJam’s generators were smart enough, there would be no need to test at all, and
fitness could be eliminated altogether. Autonomous GenJam does exactly that, as illustrated in
Figure 5.

GenJam

Measure

Population

Phrase

Population

 Licks

 Database

4-Bar

Phrases

Figure 5. Autonomous GenJam creating populations from Licks

The licks database consists of at least 16 four-measure phrases in GJNF. While these licks could
come from anywhere, the author currently uses databases adapted from a recent publication,
1001 Jazz Licks7, which conveniently provides 1001 four-bar licks in a variety of jazz styles.
The author has hand-encoded roughly a third of these 1001 licks in GJNF to build nine different
databases. When a tune is played, GenJam reads the licks from the licks database selected for
that tune and builds the measure and phrase populations as follows:

Select 16 four-measure licks at random from the licks database
Build the measure population from the 64 measures in those licks
Build the first 16 phrase individuals to represent the original 16 licks
Build 32 more phrase individuals by applying intelligent crossover to pairs of the first 16

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

The intelligent crossover operator operates on a pairs of phrases and selects crossover points
such that the resulting measures will retain the horizontal intervals of the parents at the crossover
points as closely as possible. The child phrase that best preserves the parent’s horizontal
intervals is then selected for inclusion in the phrase population. This intelligent crossover
generates new children that blend the original phrases and sound good without the need for
fitness. When combined with the intelligent measure crossover with human measures during
performance, as described in the Interactivity section, the resulting full-chorus solos tend to be
stimulating and fresh. One can imagine that autonomous GenJam has moved to Garrison
Keilor’s Lake Wobegon, where the stored licks are strong, the heard licks sound good, “and all
the children are above average.”

GenJam on a Gig: Interacting with Performer and Audience
So, what does all this technology bring to a jazz gig? In an IT context, it is useful to consider the
HCI aspects of GenJam, with respect to both the audience and the performer5. Don Norman’s
elegant framework of user interaction8 is an excellent jumping off point for describing how users
form mental models from which they can deal with technology, and we’ll begin by applying
Norman’s framework to the audience interface to GenJam.

In Norman’s framework the designer’s mental model of the system informs the creation of a
system image, which the user accesses and manipulates to form a user mental model of the
system. The user interprets the system image in the context of his or her knowledge, experience
and expectations to create a mental model that hopefully facilitates the user’s achieving some
goal by using the system. In musical performance, the goal is hopefully to enjoy the music, and
the system image includes all visual and aural aspects, including the name of the performing
group, information in a printed program, the appearance of the group on stage, the “gear” used
by the group, the stage presence of the performers, and, of course, how the group sounds.

Each audience member brings a set of expectations to a performance, including his or her
expectation of what music in the perceived genre should sound like. With GenJam that
expectation is hopefully straight-up jazz. As described in the Interactivity section, jazz is
supposed to feature spontaneous interaction between the performers in the group. Most
concertgoers expect to see the interaction as well as hear it, but with GenJam, the interaction,
while certainly present, is aural only. In fact GenJam’s visual stage presence is non-existent—its
performance is manifested only by sound coming out of speakers. This coupled with the
author’s subdued stage presence (in keeping with “cool” jazz) leads to a performance with little
visual impact, particularly when GenJam takes a full-chorus solo.

This makes GenJam less successful in foreground performance settings like a jazz club than it is
in background settings like a reception or mid-ground settings like a coffeehouse. The
audience’s expectation in a foreground setting is to pay primary attention to the entertainment,
but the expectation in a background setting is to chat with others while ear candy fills the air.
The opening reception at this conference is a classic background gig, and many attendees will
likely not realize that the music is live unless they happen to glimpse the trumpet. At a typical
reception a few people will watch the Virtual Quintet for a while, venture up to look at the
computer screen, and ask questions between numbers or while GenJam is soloing. This brings

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

the performance into the foreground for those audience members at that time, but there is no
expectation for the entire audience to “pay attention.” Incidentally, GenJam’s visual display is
minimal and essentially tells the human what GenJam is doing now and will do in the next
chorus so that the human soloist doesn’t get lost in the arrangement, which brings up the other
HCI user class to discuss—the performer.

From a performer’s perspective (at least the author’s perspective), GenJam is a stimulating and
even formidable sideman, particularly when trading fours and improvising collectively. Part of
the jazz tradition when trading fours in chase choruses is a competitive one-up-man-ship, where
each soloist takes the other player’s last four and “plays rings around it” in response. This
involves hearing the opponent’s four clearly and developing or extending it in real time. GenJam
hears me better than any human I’ve ever encountered at a jam session, and its developments
(mutations) are often more involved than a human could manage in real time (How many
improvisers can play a retrograde inversion normalized to the range of the original four while
modifying the pitches to fit the chords in the next four?). Consequently, GenJam can be a
monster in chase choruses, and it provides the human improviser with quite a challenge.

The collective improvisation modes, where GenJam plays back what the human plays delayed by
some time interval, present a different challenge for the improviser. The goal here is to play
duets with oneself in real time. I find that a delay of four measures can be too long because it is
hard to remember what I played four bars ago. A delay of one measure usually works well
because I can rest every other measure to “trade ones,” play different figures to generate
counterpoint, attempt to play a transposed version of the last measure to generate harmony, or
(usually) a combination of all three as the mood dictates. In this context, mutation is not
desirable because if I am playing a harmony or counterpoint with what I played in the recent
past, I’d like the past to stay put. It’s hard enough to play a complementary response to the past
while planning for the future at the same time, without having the past shift under my feet.
In short, this recent addition to GenJam’s improvisational modes is a terrific and stimulating
challenge.

GenJam as an IT Application
A defining aspect of Information Technology as an emerging discipline is that it emphasizes the
effective use of existing technology over the creation of new technology. In this sense, the
GenJam project is very much an IT project. From the beginning, the philosophy has been to see
how far one can get by adapting and integrating off-the-shelf components, both hardware and
software, and to create from scratch as little as possible. For example, GenJam’s rhythm section
is Band in a Box, a commercial product9. Other computer jazz researchers have wrestled with
creating an interactive rhythm section that attempts to respond to the soloist the way a sensitive
human rhythm section could. Unfortunately, these projects, while interesting, have not led to
performable results. The goal of the GenJam project is to play gigs, not to study how rhythm
sections interact with soloists, so the use of a canned but competent rhythm section, which Band
in a Box provides, was clearly prefereable.

Pitch tracking is another rock on which interactive music systems can run aground. The Roland
GI-10 used by GenJam makes plenty of errors and is definitely inferior to the pitch tracking

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

systems used by other researchers, but since the target is GJNF, the tracker only needs to be
close, and the GI-10 is perfectly adequate. Again, the goal is pragmatic, and the robustness of
GJNF significantly lowered the bar for the pitch tracker.

One slight downside to the IT philosophy in the GenJam project comes with the use of the
Carnegie Mellon MIDI toolkit (CMT), which was built by CMU’s Roger Dannenberg in the
early 1990’s10. The CMT is a C-based development environment that takes care of the MIDI
interface and real-time event scheduling issues that are critical to a real-time interactive MIDI
system like GenJam. The author had no desire to implement the low-level environment, and the
CMT provided a perfect software platform on which to build GenJam. The programmer’s
interface is clean and elegant, and the choice of C as a language was not inappropriate when the
project began in 1993. However, like most university software, the CMT has not been
maintained as well as a commercial product, and the author has had to come to terms with the
fact that GenJam is a… well… a legacy system. The CMT has kept the author using version 5 of
Think C running on a Macintosh Powerbook 180 under MacOS version 7.1. This has not limited
GenJam’s development over the years, but it has made GenJam impossible to distribute, which
isn’t really a bad thing, since the original intention for GenJam was to be the author’s sideman.

The legacy issue does bring up the question of what lies in GenJam’s future. Clearly it would be
nice to port GenJam to a more modern development environment like Java, but to date there are
no classes available that handle what the CMT does, mainly because the real-time requirements
are too close to the operating system for a clean Java class.

An ongoing issue is making GenJam sound more human (less mechanical). GenJam already
uses a host of heuristics to subtly randomize its playing in human-like ways, and the recent
addition of a physical modeling synthesis card has made most of GenJam’s voices more realistic.
However, the parameters available in the physical modeling card are extremely powerful and
offer the opportunity to greatly increase GenJam’s expressivity. Tweaking those parameters will
require a much more sophisticated (knowledge intensive) performance module, which the author
is loath to get sucked into.

Finally, the MIDI issue must be addressed. When the first version of GenJam was built in 1993,
MIDI was the only rational choice for the underlying technology. The computers of that time
were incapable of dealing with real-time audio on the scale required by GenJam, and the then-
emerging general MIDI standard provided a good IT-oriented way to use off-the-shelf tone
generators and controllers that integrated well with one another and with a computer. These days
digital samples can be computed in real time, and the potential exists for going beyond MIDI to
technologies that provide greater realism and responsiveness. In the mean time, however,
GenJam continues to get gigs, and I continue to grow with it as a jazz player.

References
1. Bentley, Peter, An Introduction to Evolutionary Design by Computers. In Peter J. Bentley
(ed.), Evolutionary Design by Computers, pp. 1-73. San Francisco, Morgan Kaufmann, 1999.

Proceedings of the 2002 Conference for Information Technology Curriculum, Rochester New York
 Copyright © 2002, Society for Information Technology Education

2. Bentley, Peter J, and Corne, David W., Creativity in Evolution: Individuals, Interactions, and
Environments. In P. J. Bentley and D. W. Corne (ed.), Creative Evolutionary Systems. San
Francisco: Morgan Kaufmann, 2001.
3. Biles, John A., GenJam: Evolution of a Jazz Improviser. In P. J. Bentley and D. W. Cor (ed.),
Creative Evolutionary Systems. San Francisco: Morgan Kaufmann, 2001.
4. Biles, J. A., GenJam: A Genetic Algorithm for Generating Jazz Solos. In Proceedings of the
1994 International Computer Music Conference, ICMA, San Francisco, 1994.
5. Biles, John A., Life with GenJam: Interacting with a Musical IGA. In Proceedings of the
1999 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 652-656,
Tokyo: IEEE, 1999.
6. Biles, John A., Autonomous GenJam: Eliminating the Fitness Bottleneck by Eliminating
Fitness. In Proceedings of the 2001 Genetic and Evolutionary Computation Conference
Workshop Program, San Francisco, July, 2001.
7. Shneidman, Jack, 1001 Jazz Licks. New York: Cherry Lane Music Company, 2001.
8. Norman, D. A., The Design of Everyday Things. Doubleday, New York, 1988.
9. Gannon, Peter, Band-in-a-Box. PG Music, Inc., Hamilton, Ontario, 1991-2002,
http://pgmusic.com/.
10. Dannenberg. Roger B., The CMU MIDI Toolkit, Version 3. Carnegie Mellon University,
Pittsburgh, PA, 1993.

John A. Biles
Al Biles (it’s a middle name thing) has been the Undergraduate Program Coordinator in RIT’s
Information Technology department since 1996. Al joined the RIT faculty in 1980 and has
served in various capacities, including Coordinator of Student Services and Advising in the
Undergraduate Computer Science department, Artificial Intelligence Area Coordinator in the
Graduate Computer Science department, and Department Chair of the Computer Science
department, from 1990-93.

Al’s recent teaching in the IT department has focused on computer music and HCI, but in
previous lives he taught courses in genetic algorithms, expert systems, logic programming,
speech and natural language understanding, and knowledge acquisition, along with the usual
programming and other CS core courses. He was a co-principal investigator on RIT’s speech
understanding project in the Northeast Artificial Intelligence Consortium, sponsored by the
Rome Air Development Center in the 1980’s.

Al began work on GenJam during a well-earned professional development leave in the 1993-94
academic year and has milked it for at least one paper a year since then. More importantly, he
performs regularly with GenJam in his Virtual Quintet, which allows him to indulge his passion
for jazz while calling it IT research. GenJam combines everything Al likes to do: play trumpet,
program, arrange tunes, buy music gear, and perform at receptions like the one on Thursday.

Email: jab@it.rit.edu
Phone: 585-475-7453
Web: http://www.it.rit.edu/~jab/

